For thermal-neutron-induced fission of $U^{235}$, nuclear charge distribution in the light part of the primary products has been calculated by using several postulates of charge distribution in the fission fragments. By comparing these values with the...
For thermal-neutron-induced fission of $U^{235}$, nuclear charge distribution in the light part of the primary products has been calculated by using several postulates of charge distribution in the fission fragments. By comparing these values with the experimental results, it is revealed that those models are not appropriate for predicting the nuclear charge distribution in the fission fragments. The variation in the most probable charge, $Z_{P}$, of the isobaric distribution for the fission fragments and the charge for a mass given by unchanged charge density, $Z_{UCD}$, is turned out to be small as a function of mass. The parameter, $Z_{P}$ $-Z_{UCD}$, varies from 0.45 to 0.5 in charge units. The nuclear charge dispersion, $\sigma$, shows about 0.5 charge units for the fission fragments. Neutron odd-even effect in fission products could not be revealed clearly without considering the odd-even effect of prompt neutron emission.