RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Influence of the Worn Tool Affected by Built-Up Edge (BUE) on Micro End-Milling Process Performance: A 3D Finite Element Modeling Investigation

      한글로보기

      https://www.riss.kr/link?id=A106063383

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Micro milling process has been utilized for several decades due to the flexibility of the process in producing complex components. The small size of the process makes the comprehension of cutting phenomenon details more difficult. This study presents ...

      Micro milling process has been utilized for several decades due to the flexibility of the process in producing complex components.
      The small size of the process makes the comprehension of cutting phenomenon details more difficult. This study presents a 3D finite element modeling (3D FEM) approach for the micro end-milling process of Aluminum material (Al6082-T6). 3D FEM simulations are carried out in full slot micro end-milling and contour up milling. The model first implements the actual tool geometry and then the effect of typical built-up edge (BUE) on the milling tool. The influence of BUE on the process performance is investigated by comparing the predicted 3d chip flow shape, burr formation and cutting forces with experiments conducted on an ultra-high precision micro milling center. Simulations indicate that BUE has significant impact on the chip shape and chip load for different teeth engagements. Results prove that also burr height is negatively affected by the presence of BUE. The predicted micro milling cutting forces resulted affected by BUE with different teeth engagements. Analysis of experimental measured forces indicates comparable results in respect to simulated profiles confirming the usefulness of the develop 3D FE modelling approach.

      더보기

      참고문헌 (Reference)

      1 Man, X., "Validation of Finite Element Cutting Force Prediction for End Milling" 1 : 663-668, 2012

      2 Third Wave Systems, "Third Wave AdvantEdge User’s Manual, 2014, Version 6.1"

      3 Ehmann, K., "The Mechanics of Machining at the Microscale : Assessment of the Current State of the Science" 126 (126): 666-678, 2004

      4 Özel, T., "The Influence of Friction Models on Finite Element Simulations of Machining" 46 (46): 518-530, 2006

      5 Kiswanto, G., "The Effect of Spindle Speed, Feed-Rate and Machining Time to the Surface Roughness and Burr Formation of Aluminum Alloy 1100 in Micro-Milling Operation" 16 (16): 435-450, 2014

      6 Masuzawa, T., "State of the Art of Micromachining" 49 (49): 473-488, 2000

      7 Aramcharoen, A., "Size Effect and Tool Geometry in Micromilling of Tool Steel" 33 (33): 402-407, 2009

      8 Medaska, M. K., "Simultaneous Measurement of the Thermal and Tribological Effects of Cutting Fluid" 3 (3): 221-237, 1999

      9 Chatterjee, S., "Simulation and Optimization of Machining Parameters in Drilling of Titanium Alloys" 62 : 31-48, 2016

      10 Chen, M. J., "Research on the Modeling of Burr Formation Process in Micro-Ball End Milling Operation on Ti-6Al-4A" 62 (62): 901-912, 2012

      1 Man, X., "Validation of Finite Element Cutting Force Prediction for End Milling" 1 : 663-668, 2012

      2 Third Wave Systems, "Third Wave AdvantEdge User’s Manual, 2014, Version 6.1"

      3 Ehmann, K., "The Mechanics of Machining at the Microscale : Assessment of the Current State of the Science" 126 (126): 666-678, 2004

      4 Özel, T., "The Influence of Friction Models on Finite Element Simulations of Machining" 46 (46): 518-530, 2006

      5 Kiswanto, G., "The Effect of Spindle Speed, Feed-Rate and Machining Time to the Surface Roughness and Burr Formation of Aluminum Alloy 1100 in Micro-Milling Operation" 16 (16): 435-450, 2014

      6 Masuzawa, T., "State of the Art of Micromachining" 49 (49): 473-488, 2000

      7 Aramcharoen, A., "Size Effect and Tool Geometry in Micromilling of Tool Steel" 33 (33): 402-407, 2009

      8 Medaska, M. K., "Simultaneous Measurement of the Thermal and Tribological Effects of Cutting Fluid" 3 (3): 221-237, 1999

      9 Chatterjee, S., "Simulation and Optimization of Machining Parameters in Drilling of Titanium Alloys" 62 : 31-48, 2016

      10 Chen, M. J., "Research on the Modeling of Burr Formation Process in Micro-Ball End Milling Operation on Ti-6Al-4A" 62 (62): 901-912, 2012

      11 Arrazola, P. J., "Recent Advances in Modelling of Metal Machining Processes" 62 (62): 695-718, 2013

      12 Dornfeld, D., "Recent Advances in Mechanical Micromachining" 55 (55): 745-768, 2006

      13 Özel, T., "Process Simulation Using Finite Element Method-Prediction of Cutting Forces, Tool Stresses and Temperatures in High-Speed Flat End Milling" 40 (40): 713-738, 2000

      14 Movahhedy, M., "Numerical Analysis of Metal Cutting with Chamfered and Blunt tools" 124 (124): 178-188, 2002

      15 Bissacco, G., "Modelling the Cutting Edge Radius Size Effect for Force Prediction in Micro Milling" 57 (57): 113-116, 2008

      16 Liang, Y., "Modeling and Experimental Analysis of Microburr Formation Considering Tool Edge Radius and Tool-Tip Breakage in Microend Milling" 27 (27): 1531-1535, 2009

      17 Bhattacharyya, A., "Metal Cutting: Theory and Practice" Jamini Kanta Sen of Central Book Publishers 1984

      18 Jaspers, S., "Material Behaviour in Conditions Similar to Metal Cutting : Flow Stress in the Primary Shear Zone" 122 (122): 322-330, 2002

      19 Deng, W. J., "Finite Element Simulation for Burr Formation Near the Exit of Orthogonal Cutting" 43 (43): 1035-, 2009

      20 Davoudinejad, A., "Finite Element Simulation and Validation of Chip Formation and Cutting Forces in Dry and Cryogenic Cutting of Ti-6Al-4A" 1 : 728-739, 2015

      21 Maranhão, C., "Finite Element Modelling of Machining of AISI 316 Steel : Numerical Simulation and Experimental Validation" 18 (18): 139-156, 2010

      22 Thepsonthi, T., "Experimental and Finite Element Simulation Based Investigations on Micro-Milling Ti-6Al-4V Titanium Alloy : Effects of CBN Coating on Tool Wear" 213 (213): 532-542, 2013

      23 Chern, G. -L., "Experimental Observation and Analysis of Burr Formation Mechanisms in Face Milling of Aluminum Alloys" 46 (46): 1517-1525, 2006

      24 Pálmai, Z., "Effects of Built-Up Edge-Induced Oscillations on Chip Formation during Turning" 332 (332): 2057-2069, 2013

      25 Ozcatalbas, Y., "Chip and Built-Up Edge Formation in the Machining of in situ Al4C3-Al Composite" 24 (24): 215-221, 2003

      26 Aurich, J. C., "Burrs-Analysis, Control and Removal" 58 (58): 519-542, 2009

      27 Ko, S. -L., "Burr Minimizing Scheme in Drilling" 140 (140): 237-242, 2003

      28 Biermann, D., "Analysis of Micro Burr Formation in Austenitic Stainless Steel X5CrNi18-10" 3 : 97-102, 2012

      29 Park, I. W., "A Study of Burr Formation Processes Using the Finite Element Method : Part II-The Influences of Exit Angle, Rake Angle, and Backup Material on Burr Formation Processes" 122 (122): 229-237, 2000

      30 Park, I. W., "A Study of Burr Formation Processes Using the Finite Element Method : Part I" 122 (122): 221-228, 2000

      31 Davoudinejad, A., "A Finite Element Prediction of Chip Flow, Burr Formation, and Cutting Forces in Micro End-Milling of Aluminum 6061-T6" 12 (12): 203-214, 2017

      32 Johnson, G. R., "A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures" 541-547, 1983

      33 Davoudinejad, A., "3D Finite Element Modeling of Micro End-Milling by Considering Tool Run-Out, Temperature Distribution, Chip and Burr Formation" University of Politecnico di Milano 2016

      34 Maurel-Pantel, A., "3D FEM Simulations of Shoulder Milling Operations on a 304l Stainless Steel" 22 : 13-27, 2012

      35 Thepsonthi, T., "3-D Finite Element Process Simulation of Micro-End Milling Ti-6Al-4V Titanium Alloy : Experimental Validations on Chip Flow and Tool Wear" 221 : 128-145, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼