Let H be a Hilbert space which is the direct sum of five closed subspaces $X_0,\;X_1,\;X_2,\;X_3$ and $X_4$ with $X_1,\;X_2,\;X_3$ of finite dimension. Let J be a $C^{1,1}$ functional defined on H with J(0) = 0. We show the existence of at least four ...
Let H be a Hilbert space which is the direct sum of five closed subspaces $X_0,\;X_1,\;X_2,\;X_3$ and $X_4$ with $X_1,\;X_2,\;X_3$ of finite dimension. Let J be a $C^{1,1}$ functional defined on H with J(0) = 0. We show the existence of at least four nontrivial critical points when the sublevels of J (the torus with three holes and sphere) link and the functional J satisfies sup-inf variational inequality on the linking subspaces, and the functional J satisfies $(P.S.)^*_c$ condition and $f|X_0{\otimes}X_4$ has no critical point with level c. For the proof of main theorem we use the nonsmooth version of the classical deformation lemma and the limit relative category theory.