RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Performance Study of the Micromorph Silicon Tandem Solar Cell Using Silvaco TCAD Simulator

      한글로보기

      https://www.riss.kr/link?id=A106479807

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper is concerned with the numerical modelling of a micromorph silicon tandem solar cell (a-Si:H/μc-Si:H), under series (two-terminal: 2T) and independent (four-terminal: 4T) electrical connection. The study is performed using the simulation so...

      This paper is concerned with the numerical modelling of a micromorph silicon tandem solar cell (a-Si:H/μc-Si:H), under series (two-terminal: 2T) and independent (four-terminal: 4T) electrical connection. The study is performed using the simulation software Silvaco TCAD. Both the initial (un-degraded or annealed) state, and the light induced degradation one (wellknown Staebler–Wronski effect in a-Si:H) are considered for the studied solar cell, operating under the standard global solar spectrum (AM1.5G). The 2T- and 4T-device optimization is carried out under the eff ects of the intrinsic (i)-layer thickness ofthe two sub-cells, and the free carrier mobilities through these layers. By increasing the i-layer thickness of the two sub-cells, the 2T-micromorph tandem cell reveals an optimal conversion efficiency n of 10% and 7.77% corresponding, respectively, to the initial and degraded states. The 4T-configuration exhibits a relatively better n of 10.94% at initial state, reduced only to 9.59% at the degraded one. Further improvement of the 2T and 4T-cell output parameters is obtained by increasing the free carrier mobilities, particularly through the top-cell i-layer. By this way, the better n is also ensured by the 4T-device, which displays an initial state-n of 12.31%, reduced only to 11.43% at the degraded state. However, the improved effi ciencies reached by the 2T-confi guration are 11.87% and 10.41% corresponding, respectively, to the initial and degraded states.

      더보기

      참고문헌 (Reference)

      1 Y. Yang, "Towards Application of Selectively Transparent and Conducting Photonic Crystal in Silicon-based BIPV and Micromorph Photovoltaics"

      2 A. Shah, "Thin-film silicon solar cell technology" 12 (12): 113-142, 2004

      3 T. Matsui, "Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber : an application to double junction tandem solar cells" 18 (18): 48-53, 2010

      4 D. Fischer, "The “micromorph” solar cell: extending a-Si:H technology towards thin fi lm crystalline silicon" IEEE 1996

      5 A. McEvoy, "Solar Cells: Materials, Manufacture and Operation" Newnes 2012

      6 P.G. O’Brien, "Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices" University of Toronto 2011

      7 D. Staebler, "Reversible conductivity changes in discharge-produced amorphous Si" 31 : 292-, 1977

      8 J. Bailat, "Recent developments of high-effi ciency micromorph tandem solar cells in KAI-M PECVD reactors" 6-10, 2010

      9 J. Hu, "Progress in fourterminal nano-crystalline Si/amorphous Si solar cells" IEEE 2005

      10 J. Krc, "Optical modeling of a-Si : H solar cells deposited on textured glass/SnO2 substrates" 92 : 749-755, 2002

      1 Y. Yang, "Towards Application of Selectively Transparent and Conducting Photonic Crystal in Silicon-based BIPV and Micromorph Photovoltaics"

      2 A. Shah, "Thin-film silicon solar cell technology" 12 (12): 113-142, 2004

      3 T. Matsui, "Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber : an application to double junction tandem solar cells" 18 (18): 48-53, 2010

      4 D. Fischer, "The “micromorph” solar cell: extending a-Si:H technology towards thin fi lm crystalline silicon" IEEE 1996

      5 A. McEvoy, "Solar Cells: Materials, Manufacture and Operation" Newnes 2012

      6 P.G. O’Brien, "Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices" University of Toronto 2011

      7 D. Staebler, "Reversible conductivity changes in discharge-produced amorphous Si" 31 : 292-, 1977

      8 J. Bailat, "Recent developments of high-effi ciency micromorph tandem solar cells in KAI-M PECVD reactors" 6-10, 2010

      9 J. Hu, "Progress in fourterminal nano-crystalline Si/amorphous Si solar cells" IEEE 2005

      10 J. Krc, "Optical modeling of a-Si : H solar cells deposited on textured glass/SnO2 substrates" 92 : 749-755, 2002

      11 M. Zeman, "Optical and electrical modeling of thin-fi lm silicon solar cells" 23 (23): 889-898, 2008

      12 K. Shaoying, "Numerical simulation of the performance of the a-Si : H/a-SiGe : H/a-SiGe : H tandem solar cell" 35 (35): 034013-, 2014

      13 L. Hudanski, "Multiterminal structures for improved efficiency a-Si/μc-Si tandem devices" IEEE 2011

      14 S. Reynolds, "Modelling of two-and four-terminal thin-fi lm silicon tandem solar cells" IOP Publishing 2012

      15 A.F. Meftah, "Modelling of Staebler–Wronski Effect in Hydrogenated Amorphous Silicon Under Moderate and Intense Illumination" Trans Tech Publ 2004

      16 M. Foldyna, "Microwave and Optical Technology 2003" International Society for Optics and Photonics 2004

      17 M. Stutzmann, "Microscopic nature of coordination defects in amorphous silicon" 40 (40): 9834-, 1989

      18 J. Meier, "Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique" 66 (66): 73-84, 2001

      19 Q. Zhang, "Metastable-defect generation in hydrogenated amorphous silicon" 50 (50): 1551-, 1994

      20 A. Marti, "Limiting effi ciencies for photovoltaic energy conversion in multigap systems" 43 (43): 203-222, 1996

      21 O. Vetterl, "Intrinsic microcrystalline silicon : a new material for photovoltaics" 62 (62): 97-108, 2000

      22 J. Meier, "Intrinsic microcrystalline silicon (/spl mu/c-Si:H)-a promising new thin fi lm solar cell material" 1994

      23 K. -Y. Chan, "Infl uence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-fi lm transistors" 354 (354): 2505-2508, 2008

      24 P. Buehlmann, "In situ silicon oxide based intermediate refl ector for thin-fi lm silicon micromorph solar cells" 91 (91): 143505-, 2007

      25 M. Powell, "Improved defect-pool model for charged defects in amorphous silicon" 48 (48): 10815-, 1993

      26 R.A. Street, "Hydrogenated Amorphous Silicon" Cambridge University Press 2005

      27 H. Yamamoto, "High-efficiency μc-Si/c-Si heterojunction solar cells" 74 (74): 525-531, 2002

      28 F. Dadouche, "Geometrical optimization and electrical performance comparison of thin-fi lm tandem structures based on pm-Si : H and μc-Si : H using computer simulation" 2 : 20301-, 2011

      29 M. Kondo, "Four terminal cell analysis of amorphous/microcrystalline Si tandem cell" IEEE 2003

      30 A. Madan, "Flexible displays and stable high effi ciency four terminal solar cells using thin fi lm silicon technology" 200 (200): 1907-1912, 2005

      31 "Device Simulator Atlas Ver. 5.10.0.R. Atlas User’s Manual"

      32 M. Powell, "Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon" 53 (53): 10121-, 1996

      33 A. F. Meftah, "Created defect under illumination in a-Si : H : hydrogenated or isolated dangling bond?" 75 (75): 269-273, 2004

      34 A. F. Meftah, "Computer simulation of the a-Si:H p–i–n solar cell performance sensitivity to the free carrier’s mobilities, the capture cross sections and the density of gap states" 18 (18): 9435-, 2006

      35 A. F. Bouhdjar, "Computer modelling and analysis of the photodegradation effect in a-Si : H p–i–n solar cell" 36 (36): 014002-, 2015

      36 B.E. Pieters, "Characterization of thin-fi lm silicon materials and solar cells through numerical modeling" Delft University of Technology 2008

      37 D. Carlson, "Amorphous silicon solar cell" 28 (28): 671-673, 1976

      38 V. Avrutin, "Amorphous and micromorph Si solar cells : current status and outlook" 38 (38): 526-542, 2014

      39 D. Abou-Ras, "Advanced Characterization Techniques for Thin Film Solar Cells" Wiley 2011

      40 A. F. Meftah, "A theoretical study of light induced defect creation, annealing and photoconductivity degradation in a-Si:H" 16 (16): 3107-, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학회명변경 영문명 : 미등록 -> The Korean Institute of Electrical and Electronic Material Engineers KCI등재후보
      2005-05-30 학술지명변경 한글명 : Transactions on Electrical and Electroni -> Transactions on Electrical and Electronic Materials KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.1
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.1 0.11 0.239 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼