Substantial progress has been made towards understanding the folding mechanisms of proteins in virto and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimen...
Substantial progress has been made towards understanding the folding mechanisms of proteins in virto and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible cules for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the part decade are summarized.