RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Adaptive Collision Avoidance Using Road Friction Information

      한글로보기

      https://www.riss.kr/link?id=A107461703

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Technical development with the goal of achieving zero accidents and zero fatalities is ongoing. The autonomous emergency braking systems that debuted in the late 2000s have proven their value regarding improved safety. However, the technology still presents many challenges because it is not easy to ensure that the system will operate as intended in any environment and at any time. Any system that is unaware of its environment is prone to be excessively conservative, which could adversely affect the efficacy of said system. Situation awareness is a key to resolving this problem. The present study suggests the use of warning braking to gain an awareness of the level of road friction, which is one of the major uncertainties faced on the road. During warning braking, the tire-road maximum friction coefficient is estimated in real time, and a threat assessment is performed adaptively based on the friction information. Because warning braking is momentary and applied with limited dynamics due to issues related to human factors, this study discusses the major considerations and requirements for the key parameters related to warning braking. The performance of the suggested adaptive collision avoidance scheme is verified by means of simulation and experiments.</P>
      번역하기

      <P>Technical development with the goal of achieving zero accidents and zero fatalities is ongoing. The autonomous emergency braking systems that debuted in the late 2000s have proven their value regarding improved safety. However, the technology...

      <P>Technical development with the goal of achieving zero accidents and zero fatalities is ongoing. The autonomous emergency braking systems that debuted in the late 2000s have proven their value regarding improved safety. However, the technology still presents many challenges because it is not easy to ensure that the system will operate as intended in any environment and at any time. Any system that is unaware of its environment is prone to be excessively conservative, which could adversely affect the efficacy of said system. Situation awareness is a key to resolving this problem. The present study suggests the use of warning braking to gain an awareness of the level of road friction, which is one of the major uncertainties faced on the road. During warning braking, the tire-road maximum friction coefficient is estimated in real time, and a threat assessment is performed adaptively based on the friction information. Because warning braking is momentary and applied with limited dynamics due to issues related to human factors, this study discusses the major considerations and requirements for the key parameters related to warning braking. The performance of the suggested adaptive collision avoidance scheme is verified by means of simulation and experiments.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼