RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Direct Ink Writing of Cement Structures Modified with Nanoscale Additive

      한글로보기

      https://www.riss.kr/link?id=O81766965

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Synthetic structures built with cement benefit from high compressive strength, but their brittleness limits their fracture toughness under conditions where repeated, unnegotiable strains are imparted. This could be somewhat alleviated, if complex stru...

      Synthetic structures built with cement benefit from high compressive strength, but their brittleness limits their fracture toughness under conditions where repeated, unnegotiable strains are imparted. This could be somewhat alleviated, if complex structures with tunable geometries is created, for example, via direct ink writing (DIW)‐based 3D printing. However, the nature of the slurries used in the DIW printing of cement must be modified with proper rheology to be effectively and programmatically printed with distinct mechanical properties intended for specific applications. Here, the authors have developed a nano‐clay modified cement‐based direct ink that enables high‐resolution 3D printing of complex architected structures of tunable geometries. The developed ink has a significant shear thinning and rapid gel strength properties which facilitate extrusion from a micro‐nozzle (≈400 μm) under ambient conditions conserving the filamentary shape with holding the load of the subsequent printed layer above. A series of architected structures have revealed how nanoscale additive, fabrication process, and architecture of the structures can influence both the stiffness and toughness in the cementitious materials. Understanding these construction principles based on architectures, materials, and processing can change the brittle cement‐based structure to a tough one for structural and functional applications.
      Nanoscale additive modified cement‐based ink enables high‐resolution 3D printing of complex architected structures with tunable geometry, functionality, and mechanical performance.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼