2022 개정 과학과 교육과정은 AI를 활용한 탐구 활동을 경험함으로써 융합적 사고를 바탕으로 일상생활과 사회 속 과학 문제를 해결할 수 있는 능력을 기르는 것을 목표로 한다. 이에 과학 교...

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A109055633
2024
Korean
KCI등재
학술저널
141-153(13쪽)
0
상세조회0
다운로드2022 개정 과학과 교육과정은 AI를 활용한 탐구 활동을 경험함으로써 융합적 사고를 바탕으로 일상생활과 사회 속 과학 문제를 해결할 수 있는 능력을 기르는 것을 목표로 한다. 이에 과학 교...
2022 개정 과학과 교육과정은 AI를 활용한 탐구 활동을 경험함으로써 융합적 사고를 바탕으로 일상생활과 사회 속 과학 문제를 해결할 수 있는 능력을 기르는 것을 목표로 한다. 이에 과학 교과와 AI를융합한 과학-AI 융합교육 프로그램을 개발하고 이를 활용하여 고등학생을 대상으로 융합 수업을 진행하였다. 과학-AI 융합 수업은 감쇠진자의 운동을 정성적으로 이해하고 블록코딩 플랫폼 KNIME을 사용하여 진자의 위치를 예측할 수 있는 AI 모델을 구축하는 것을 목표로 한다. 개별 심층 면담을 통해 학습자의 경험을 이해하고 해석하고자 하였다. Giorgi의 현상학적 연구 방법론을 바탕으로 학습자의 참여동기, 배움과 변화, 어려움과 수업의 한계를 기술하였다. 학생들은AI에 대한 관심과 사회적 트렌드에 대한 인식을 바탕으로 수업에참여하고자 하는 동기를 가지고 있었다. 학생들은 직접 데이터를 수집하고 AI 모델을 구축하는 것을 배웠다. 실험 결과를 바탕으로 주변현상을 예측할 수 있을 것으로 기대하였으며 융합 수업을 긍정적으로인식하였다. 한편, 여전히 익숙하지 않은 플랫폼, AI 원리 이해를 어려움으로 인식하였고 따라해야만 하는 수업 방식의 한계와 수업 내용상의 한계를 인식하였다. 융합 수업의 경험은 실생활의 문제를 AI를통해 해결하고자 하는 학습 동기로 나타났으며, 학생들이 느낀 어려움과 한계는 더 심화되고 확장된 주제를 학습하고 싶은 동기로 이어졌다. 이를 바탕으로 과학-AI 융합 수업을 위한 논의 및 제언을 도출하였다. 본 연구는 과학-AI 융합 수업을 개발하고 이를 현장에 적용할때 시사점을 제공할 것으로 기대된다.
다국어 초록 (Multilingual Abstract)
The 2022 revised science curriculum aims to develop the ability to solve scientific problems arising in daily life and society based on convergent thinking stimulated through participation in research activities using artificial intelligence (AI). The...
The 2022 revised science curriculum aims to develop the ability to solve scientific problems arising in daily life and society based on convergent thinking stimulated through participation in research activities using artificial intelligence (AI). Therefore, we developed a science-AI convergence education program that combines the science curriculum with artificial intelligence and employed it in convergence classes for high school students. The aim of the science-AI convergence class was for students to qualitatively understand the movement of a damped pendulum and build an AI model to predict the position of the pendulum using the block coding platform KNIME. Individual in-depth interviews were conducted to understand and interpret the learners’ experiences. Based on Giorgi’s phenomenological research methodology, we described the learners’ learning processes and changes, challenges and limitations of the class. The students collected data and built the AI model. They expected to be able to predict the surrounding phenomena based on their experimental results and perceived the convergence class positively.
On the other hand, they still perceived an with the unfamiliarity of platform, difficulty in understanding the principle of AI, and limitations of the teaching method that they had to follow, as well as limitations of the course content. Based on this, we discussed the strengths and limitations of the science-AI convergence class and made suggestions for science-AI convergence education. This study is expected to provide implications for developing science-AI convergence curricula and implementing them in the field.
참고문헌 (Reference)
1 McKenzie, D. L., "The construction and validation of the test of graphing in science(TOGS)" 23 (23): 571-579, 1986
2 Tedre, M., "Teaching machine learning in K–12 classroom : Pedagogical and technological trajectories for artificial intelligence education" 9 : 110558-110572, 2021
3 신은혜, "Science Teachers’Motivation and Perception of Science⋅AI Convergence Education" 16 (16): 398-412, 2022
4 Liang J. C., "Roles and research foci of artificial intelligence in language education: an integrated bibliographic analysis and systematic review approach" 1-27, 2021
5 김태선 ; 김범기, "Reserch Article : The Comparison of Graphing Abilities of pupils in grades 7 to 12 based on TOGS(The Test of Graphing in Science)" 22 (22): 768-778, 2002
6 Giorgi, A., "Qualitive research methodology : advanced workshop on the descriptive phenomenological method”, qualitative research methodology" Korea Center for Qualitative Methodology 2004
7 Giorgi, A., "Psychology as a Human Science" Harper & Row 1970
8 Alamäki, A., "Privacy concern, data quality and trustworthiness of AI-analytics" 2019
9 Lee, I., "Preparing High School Teachers to Integrate AI Methods into STEM Classrooms" 36 (36): 12783-12791, 2022
10 하상우 ; Jho Hunkoog, "Physics Education in the Era of the Fourth Industrial Revolution through the Concepts of Hyper-Convergence, Hyper-Connection, and Super-Intelligence" 72 : 319-328, 2022
1 McKenzie, D. L., "The construction and validation of the test of graphing in science(TOGS)" 23 (23): 571-579, 1986
2 Tedre, M., "Teaching machine learning in K–12 classroom : Pedagogical and technological trajectories for artificial intelligence education" 9 : 110558-110572, 2021
3 신은혜, "Science Teachers’Motivation and Perception of Science⋅AI Convergence Education" 16 (16): 398-412, 2022
4 Liang J. C., "Roles and research foci of artificial intelligence in language education: an integrated bibliographic analysis and systematic review approach" 1-27, 2021
5 김태선 ; 김범기, "Reserch Article : The Comparison of Graphing Abilities of pupils in grades 7 to 12 based on TOGS(The Test of Graphing in Science)" 22 (22): 768-778, 2002
6 Giorgi, A., "Qualitive research methodology : advanced workshop on the descriptive phenomenological method”, qualitative research methodology" Korea Center for Qualitative Methodology 2004
7 Giorgi, A., "Psychology as a Human Science" Harper & Row 1970
8 Alamäki, A., "Privacy concern, data quality and trustworthiness of AI-analytics" 2019
9 Lee, I., "Preparing High School Teachers to Integrate AI Methods into STEM Classrooms" 36 (36): 12783-12791, 2022
10 하상우 ; Jho Hunkoog, "Physics Education in the Era of the Fourth Industrial Revolution through the Concepts of Hyper-Convergence, Hyper-Connection, and Super-Intelligence" 72 : 319-328, 2022
11 이지원 ; 오인수, "Phenomenological Study on a School Counselor’s Professional Development Experience" 17 (17): 351-372, 2016
12 Lincoln, Y. S., "Naturalistic inquiry" Sage 1985
13 Mariescu-Istodor, R., "Machine learning for high school students" 1-9, 2019
14 정우경 ; 이준기 ; 오상욱, "Investigation on the Difficulties During Middle School Students` Finding Inquiry Topics on Open-Inquiry Activities" 31 (31): 1199-1213, 2011
15 Srikant, S., "Introducing data science to school kids" 561-566, 2017
16 신원섭, "Exploring the Possibility of AI Convergence Science Education in Motion and Energy" 10 (10): 73-86, 2020
17 이재호 ; 권기은, "Exploring the Effectiveness of CT and AI Capabilities Through the Development and Application of Elementary AI Convergence Education Programs" 8 (8): 301-310, 2022
18 Hemlata, P. G., "Experimental Evaluation of Open Source Data Mining Tools: R, Rapid Miner and KNIME" 9 (9): 2019
19 김은희 ; 전영석, "Effects of STEAM Program on Students`Scientific Literacy which emphasizes Observation in Real World Phenomena" 28 (28): 1208-1220, 2017
20 조헌국, "Discussion for how to Apply Artificial Intelligence to Physics Education" 70 : 974-984, 2020
21 손원성, "Development of SW education class plan using artificial intelligence education platform : focusing on upper grade of elementary school" 24 (24): 453-462, 2020
22 홍의정 ; 장진섭 ; 채승철, "Development of No-Code AI Convergence Education Teaching Material Using Graphical Workflow : KNIME-a Data Analysis Platform" 17 (17): 34-47, 2023
23 장진섭 ; 홍의정 ; 채승철, "Development of Mathematics, Science, and Information Convergence Educational Materials Based on Coding of Artificial Neural Network" 17 (17): 174-191, 2023
24 홍지연 ; 김영식, "Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students" 24 (24): 633-641, 2020
25 송진웅 ; 강석진 ; 곽영순 ; 김동건 ; 김수환 ; 나지연 ; 도종훈 ; 민병곤 ; 박성춘 ; 배성문 ; 손연아 ; 손정우 ; 오필석 ; 이준기 ; 이현정 ; 임혁 ; 정대홍 ; 정종훈 ; 김진희 ; 정용재, "Contents and Features of ‘Korean Science Education Standards(KSES)’ for the Next Generation" 39 (39): 465-478, 2019
26 이주영 ; 김귀훈 ; 강성주, "Content System and Teaching/Learning Case Study for Systematic Convergence of Artificial Intelligence and Science Subjects" 22 (22): 623-640, 2022
27 Le, H., "Collaborative learning practices : teacher and student perceived obstacles to effective student collaboration" 48 (48): 103-122, 2018
28 Chassignol, M., "Artificial Intelligence trends in education : a narrative overview" 136 : 16-24, 2018
29 Karsoliya, S., "Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture" 3 (3): 714-717, 2012
30 이성혜 ; 한정윤, "Analysis of Relationships among SW Interests, AI Interests, Level of Programming Skills, AI Self-Efficacy, and Persistence of AI Learning" 23 (23): 51-58, 2020
31 구진희, "Analysis of Educational Needs by College Majors for Liberal Arts SW Coding Classes-Based on Coding Projects Applying PBL-" 7 (7): 113-138, 2023
32 송지영 ; 최원호, "Analysis of Characteristics of Middle School Science Gifted Students Facing Discrepant Experimental Cases" 10 (10): 63-74, 2018
33 Moon, S., "An Analysis of High School Students’Perception and Satisfaction with Chemical Class Converging Artificial Intelligence" 26 (26): 113-116, 2022
34 Lee, H., "An Analysis of Factors of High School Student’s Career Choices" 4 (4): 53-82, 1999
35 이재호 ; 이승훈 ; 이동형, "An Analysis of Educational Effectiveness of Elementary Level AI Convergence Education Program" 25 (25): 471-481, 2021
36 Ogegbo, A. A., "A systematic review of computational thinking in science classrooms" 58 (58): 203-230, 2022
37 나장함, "A comparative analysis of validity issues in qualitative research" 19 (19): 265-283, 2006
38 신원섭 ; 신동훈, "A Study on the Application of Artificial Intelligence in Elementary Science Education" 39 (39): 117-132, 2020
39 이민영 ; 전석주, "A Study on Improving Logical Thinking Ability of Elementary School Students with Entry and Scratch" 28 (28): 173-185, 2017
40 강지훈, "A Phenomenological Study on the Science Anxiety Experience of Science-Gifted Middle School Students" 41 (41): 283-295, 2021
41 오세라, "A Phenomenological Study on the High School Credit System Regarding Social Studies Related Elective Classes" 30 (30): 163-192, 2022
42 홍효정 ; 현승환 ; 정순여 ; 정창원, "A Case Study on the Development and Application of Learning Strategies for Adaptation to College Life of International Students Education Program" 7 (7): 561-587, 2013
43 Ministry of Education, "3rd Comprehensive plan for convergence education of mathematics, science, and information (‘20-‘24) announcement. Republic of Korea"
44 Ministry of Education, "2022 revised science curriculum" Ministry of Education 2022
45 Ministry of Education, "2022 revised curriculum general main point. Republic of Korea"
과학 관련 직업과 진로 교육에 대한 중학교 과학 교사의 인식
2015 개정 교육과정 생명과학Ⅱ와 공학일반에 제시된 생명공학기술 관련 학습 내용 분석
소집단 모형구성 수업 진행에서 나타난 초임 과학 교사의 인식론적 프레이밍 변화 탐색 -‘빈칸 채우기’에서 ‘사회적 추론 구성’으로-
과학 교과서 개발 과정에서 교육과정 적용에의 고민과 어려움 -2022 개정 과학과 교육과정의 ‘통합과학’을 중심으로-
[제18회 김옥길기념강좌] 인공지능, 감정, 휴머니즘(Human-Compatible Artificial Intelligence’)’
이화여자대학교 스튜어드 러셀누구나 할 수 있는 데이터 분석과 인공지능[Data Analysis and Artificial Intelligence for Everyone]
K-MOOC 인하공업전문대학 이세훈누구나 할 수 있는 데이터 분석과 인공지능[Data Analysis and Artificial Intelligence for Everyone]
K-MOOC 인하공업전문대학 이세훈일반 성인이 꼭 알아야 할 과학기술 기초소양(인공지능, 첨단모빌리티)
K-MOOC 한국과학창의재단 민경하, 양희경, 권용주K-SCIENCE, 과학한류 결실
YTN SCIENCE