By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Ol...
By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Oldroyd‐B model, and the fluid and solid phase temperatures are represented using a two‐field model for the heat transport equation. Anisotropy in permeability and fluid and solid thermal conductivities are considered. A cubic Landau equation is derived separately to study the stability of bifurcating solution of both stationary and oscillatory convection, and the results of linear instability theory are delineated. The boundary between stationary and oscillatory convection is demarcated by identifying codimension‐two points in the viscoelastic parameters plane. It is found that the subcritical instability is not possible, and the linear instability analysis itself completely captures the behavior of the onset of convection. Heat transfer is obtained in terms of Nusselt number, and the effect of governing parameters on the same is discussed. The results of the Maxwell fluid are obtained as a particular case from the present study.