RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Nonlinear convection in an elasticoviscous fluid‐saturated anisotropic porous layer using a local thermal nonequilibrium model

      한글로보기

      https://www.riss.kr/link?id=O113105996

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        2688-4534

      • Online ISSN

        2688-4542

      • 등재정보

        SCOPUS;ESCI

      • 자료형태

        학술저널

      • 수록면

        1691-1712   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Oldroyd‐B model, and the fluid and solid phase temperatures are represented using a two‐field model for the heat transport equation. Anisotropy in permeability and fluid and solid thermal conductivities are considered. A cubic Landau equation is derived separately to study the stability of bifurcating solution of both stationary and oscillatory convection, and the results of linear instability theory are delineated. The boundary between stationary and oscillatory convection is demarcated by identifying codimension‐two points in the viscoelastic parameters plane. It is found that the subcritical instability is not possible, and the linear instability analysis itself completely captures the behavior of the onset of convection. Heat transfer is obtained in terms of Nusselt number, and the effect of governing parameters on the same is discussed. The results of the Maxwell fluid are obtained as a particular case from the present study.
      번역하기

      By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Ol...

      By adopting a perturbation method and a local thermal nonequilibrium model, nonlinear thermal convection in an anisotropic porous layer saturated by an elasticoviscous fluid is investigated. An elasticoviscous fluid is modeled by a modified Darcy‐Oldroyd‐B model, and the fluid and solid phase temperatures are represented using a two‐field model for the heat transport equation. Anisotropy in permeability and fluid and solid thermal conductivities are considered. A cubic Landau equation is derived separately to study the stability of bifurcating solution of both stationary and oscillatory convection, and the results of linear instability theory are delineated. The boundary between stationary and oscillatory convection is demarcated by identifying codimension‐two points in the viscoelastic parameters plane. It is found that the subcritical instability is not possible, and the linear instability analysis itself completely captures the behavior of the onset of convection. Heat transfer is obtained in terms of Nusselt number, and the effect of governing parameters on the same is discussed. The results of the Maxwell fluid are obtained as a particular case from the present study.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼