RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Ballasting plan optimization for operation of a 2D floating dry dock

      한글로보기

      https://www.riss.kr/link?id=A106865522

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast s...

      A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast system. An appropriate ballasting plan warrants safe and precise construction on a floating dock. Particularly, in the case of a 2D floating dock, ballasting plan evaluation is crucial due to complex deformation modes. In this paper, we developed a method to calculate the optimal ballasting plan for accurate and precise construction on a 2D floating dock. The finite element method was used for considering the flexibility of the floating dock as well as the construction blocks. Through a gradient-based optimization algorithm, the optimal ballasting plan for the given load condition was calculated in semi-real time (5 min). The present method was successfully used for the actual construction of an offshore structure on the 2D floating dock.

      더보기

      참고문헌 (Reference)

      1 Lee, C., "The strain-smoothed MITC3+ shell finite element" 223 : 2019

      2 Lee, P. S., "The quadratic MITC plate and MITC shell elements in plate bending" 41 : 712-728, 2010

      3 Ko, Y., "The MITC4+ Shell element and its performance" 169 : 57-68, 2016

      4 Jun, H., "The MITC3+ shell element enriched in membrane displacements by interpolation covers" 337 : 458-480, 2018

      5 Lee, Y. G., "The MITC3+ shell element and its performance" 138 : 12-23, 2014

      6 Russian Maritime Register of Shipping, "Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships"

      7 China Classification Society, "Rules for Classification of Floating Docks"

      8 Det Norske Veritas, "Rules for Classification of Floating Docks"

      9 Germanischer Lloyd, "Rules for Classification and Construction Floating Docks"

      10 American Bureau of Shipping, "Rules for Building and Classing Steel Floating Dry Docks"

      1 Lee, C., "The strain-smoothed MITC3+ shell finite element" 223 : 2019

      2 Lee, P. S., "The quadratic MITC plate and MITC shell elements in plate bending" 41 : 712-728, 2010

      3 Ko, Y., "The MITC4+ Shell element and its performance" 169 : 57-68, 2016

      4 Jun, H., "The MITC3+ shell element enriched in membrane displacements by interpolation covers" 337 : 458-480, 2018

      5 Lee, Y. G., "The MITC3+ shell element and its performance" 138 : 12-23, 2014

      6 Russian Maritime Register of Shipping, "Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships"

      7 China Classification Society, "Rules for Classification of Floating Docks"

      8 Det Norske Veritas, "Rules for Classification of Floating Docks"

      9 Germanischer Lloyd, "Rules for Classification and Construction Floating Docks"

      10 American Bureau of Shipping, "Rules for Building and Classing Steel Floating Dry Docks"

      11 Shan, X. L., "Risk management of mooring operation of floating dock" 4 : 398-409, 2009

      12 Wang, G. G., "Review of metamodeling techniques in support of engineering design optimization" 129 : 370-380, 2006

      13 Ko, Y., "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems" 193 : 187-206, 2017

      14 Kurniawan, A., "Optimization of ballast plan in launch jacker load-out" 38 : 267-288, 2009

      15 Lee, P. S., "On the asymptotic behavior of shell structures and the evaluation in finite element solutions" 80 : 235-255, 2002

      16 윤경호, "Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution" 국제구조공학회 62 (62): 33-42, 2017

      17 Yoon, K., "Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors" 281 : 106-130, 2014

      18 Yoon, K., "Modeling the warping displacement fields for discontinuously varying arbitrary cross-section beams" 131 : 56-69, 2014

      19 Lee, P. S., "Insight into finite element shell discretizations by use of the ‘basic shell mathematical model’" 83 : 69-90, 2005

      20 Lee, Y. G., "Improving the MITC3 shell finite element by using the Hellinger-Reissner principle" 110-111 : 93-106, 2012

      21 Yoon, J. S., "Hydroelastic analysis of floating plates with multiple hinge connections in regular waves" 36 : 65-87, 2014

      22 Yoon, K., "Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects" 132 : 1231-1247, 2015

      23 Smith, D., "Floating dock deflection management systems, US Patent 8,155,812"

      24 Bathe, K.J, "Finite Element Procedures" Prentice Hall 2014

      25 Rao, S.S., "Engineering Optimization: Theory and Practice" Wiley 2009

      26 Lee, P. S., "Development of MITC isotropic triangular shell finite elements" 82 : 945-962, 2004

      27 Korotaev, V. V., "Deflection measuring system for floating dry docks" 117 : 39-44, 2016

      28 Yang, G., "Deflection and inclination measuring system for floating dock based on wireless networks" 69 : 1-8, 2013

      29 Kim, H. J., "Continuum mechanics based beam elements for linear and nonlinear analyses of multi-layered composite beams with interlayer slips" 235 : 111740-, 2020

      30 Yoon, K., "An efficient warping model for elastoplastic torsional analysis of composite beams" 178 : 37-49, 2017

      31 Park, K. C., "A simple algorithm for localized construction of non-matching structural interfaces" 53 : 2117-2142, 2002

      32 윤경호, "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities" 국제구조공학회 43 (43): 411-437, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재
      2005-05-26 학술지명변경 한글명 : 국제구조계산역학지 -> Structural Engineering and Mechanics, An Int'l Journal KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.12 0.62 0.94
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.79 0.68 0.453 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼