<P>In this study, the large-area tailoring of reduced graphene oxide (rGO) with tunable arrays of Pt nanostructures has been demonstrated. We synthesized arrays of catalytic Pt nanoparticles, nanowires, and their combined nanostructures from sel...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107442406
2016
-
SCOPUS,SCIE
학술저널
124-131(8쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>In this study, the large-area tailoring of reduced graphene oxide (rGO) with tunable arrays of Pt nanostructures has been demonstrated. We synthesized arrays of catalytic Pt nanoparticles, nanowires, and their combined nanostructures from sel...
<P>In this study, the large-area tailoring of reduced graphene oxide (rGO) with tunable arrays of Pt nanostructures has been demonstrated. We synthesized arrays of catalytic Pt nanoparticles, nanowires, and their combined nanostructures from self-assembled thin films of polystyrene-block-poly( 4-vinylpyridine) copolymers and their micelles. Then, rGO was transferred onto these Pt nanostructures, which were capable of catalyzing the oxidative elimination of carbon atoms from the rGO nanoregions in contact with the Pt, resulting in successful pattern transfer from the Pt nanoarrays onto the rGO, forming various nanostructures, such as nanoholes, nanoribbons, and perforated nanoribbons. Moreover, we transferred the tailored rGO onto a transparent and flexible polymeric substrate. The size and periodicity of the rGO nanostructures were controlled on the nanometer scale by adjusting those of the Pt nanostructures, which were strongly dependent on the molecular weights of the copolymers. In addition, arrayed Pt nanowires were aligned in a topographically patterned substrate by the directed self-assembly of the copolymers, enabling the fabrication of well-aligned rGO nanoribbon and nano-square arrays. (C) 2016 Elsevier Ltd. All rights reserved.</P>
A study of mechanism on infrared photoresponse in three-dimensional single-walled carbon nanotubes
Human hair-derived hollow carbon microfibers for electrochemical sensing