RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Copper–Nickel Alloy Plating to Improve the Contact Resistivity of Metal Grid on Silicon Heterojunction Solar Cells

      한글로보기

      https://www.riss.kr/link?id=A106833288

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As a dominant metallization technique of crystalline silicon solar cells, screen printing with silver paste has been generallyused in photovoltaic industries. In case of the silicon heterojunction solar cells (SHJ) structure, a metal contact with silverpaste has lower electrical conductivity than pure silver due to the other compositions of the paste. For the reason, copperplating is attractive substitute for the silver paste since the plated-copper contacts have high conductivity and easily reduceline width which is benefi cial to light absorption. In this experiment, we studied copper–nickel (Cu–Ni) alloy plating to forma seed layer of the copper plating on an indium tin oxide (ITO) layer which is used for the transparent conductive oxide ofthe SHJ solar cells. As a requirement of suitable seed layer, contact resistivity (ρ c ) between the seed and the ITO is importantto obtain high fi ll factor by decreasing series resistance of solar cells. Contact resistivity values of the samples with variednickel contents in the Cu–Ni fi lms were extracted by using transfer length method. Also, the composition ratio of the alloylayer was analyzed by energy dispersive spectrometer. Moreover, X-ray diff raction was used to compare lattice parameterand crystallite size of the fi lm.
      번역하기

      As a dominant metallization technique of crystalline silicon solar cells, screen printing with silver paste has been generallyused in photovoltaic industries. In case of the silicon heterojunction solar cells (SHJ) structure, a metal contact with silv...

      As a dominant metallization technique of crystalline silicon solar cells, screen printing with silver paste has been generallyused in photovoltaic industries. In case of the silicon heterojunction solar cells (SHJ) structure, a metal contact with silverpaste has lower electrical conductivity than pure silver due to the other compositions of the paste. For the reason, copperplating is attractive substitute for the silver paste since the plated-copper contacts have high conductivity and easily reduceline width which is benefi cial to light absorption. In this experiment, we studied copper–nickel (Cu–Ni) alloy plating to forma seed layer of the copper plating on an indium tin oxide (ITO) layer which is used for the transparent conductive oxide ofthe SHJ solar cells. As a requirement of suitable seed layer, contact resistivity (ρ c ) between the seed and the ITO is importantto obtain high fi ll factor by decreasing series resistance of solar cells. Contact resistivity values of the samples with variednickel contents in the Cu–Ni fi lms were extracted by using transfer length method. Also, the composition ratio of the alloylayer was analyzed by energy dispersive spectrometer. Moreover, X-ray diff raction was used to compare lattice parameterand crystallite size of the fi lm.

      더보기

      참고문헌 (Reference)

      1 Denton, A. R., "Vegard’s law" 43 (43): 3161-, 1991

      2 Yu, J., "Tungsten doped indium oxide film : ready for bifacial copper metallization of silicon heterojunction solar cell" 144 : 359-363, 2016

      3 Green, T., "The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys" 145 (145): 875-881, 1998

      4 Holzwarth, U., "The Scherrer equation versus the’Debye-Scherrer equation’" 6 (6): 534-534, 2011

      5 Lee, S. H., "Study of Cu-X alloy seed layer on ITO for copperplated silicon heterojunction solar cells" 87 : 19-23, 2018

      6 Munoz, D., "Strategies of cost reduction and high performance on a-Si : H/c-Si heterojunction solar cells : 21% efficiency on monolike substrate" 3071-3073, 2013

      7 Schroder, D. K., "Solar cell contact resistance—a review" 31 (31): 637-647, 1984

      8 Geissbühler, J., "Silicon heterojunction solar cells with copper-plated grid electrodes : status and comparison with silver thick-film techniques" 4 (4): 1055-1062, 2014

      9 Schroder, D.K., "Semiconductor Material and Device Characterization" Wiley 2006

      10 Khanna, A., "Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells" 349 : 880-886, 2015

      1 Denton, A. R., "Vegard’s law" 43 (43): 3161-, 1991

      2 Yu, J., "Tungsten doped indium oxide film : ready for bifacial copper metallization of silicon heterojunction solar cell" 144 : 359-363, 2016

      3 Green, T., "The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys" 145 (145): 875-881, 1998

      4 Holzwarth, U., "The Scherrer equation versus the’Debye-Scherrer equation’" 6 (6): 534-534, 2011

      5 Lee, S. H., "Study of Cu-X alloy seed layer on ITO for copperplated silicon heterojunction solar cells" 87 : 19-23, 2018

      6 Munoz, D., "Strategies of cost reduction and high performance on a-Si : H/c-Si heterojunction solar cells : 21% efficiency on monolike substrate" 3071-3073, 2013

      7 Schroder, D. K., "Solar cell contact resistance—a review" 31 (31): 637-647, 1984

      8 Geissbühler, J., "Silicon heterojunction solar cells with copper-plated grid electrodes : status and comparison with silver thick-film techniques" 4 (4): 1055-1062, 2014

      9 Schroder, D.K., "Semiconductor Material and Device Characterization" Wiley 2006

      10 Khanna, A., "Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells" 349 : 880-886, 2015

      11 Kleider, J. -P., "Revisiting the theory and usage of junction capacitance : application to high efficiency amorphous/crystalline silicon heterojunction solar cells" 135 : 8-16, 2015

      12 Baskaran, I., "Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties" 60 (60): 1990-1995, 2006

      13 Li, Z., "Patterning for plated heterojunction cells" 67 : 76-83, 2015

      14 Ghosh, S., "Nanocrystalline Ni–Cu alloy plating by pulse electrolysis" 126 (126): 48-63, 2000

      15 Fernandez, F.Z., "Metallisation for silicon heterojunction solar cells" 1669-1672, 2010

      16 Chassaing, E., "Mechanism of copper–nickel alloy electrodeposition" 17 (17): 1267-1280, 1987

      17 Varea, A., "Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films" 7 : 1288-1302, 2012

      18 Rodofili, A., "Laser-transferred Niv-seed for the metallization of silicon heterojunction solar cells by Cuplating" 402-405, 2017

      19 Muñoz, D., "Key aspects on development of high effi -ciency heterojunction and IBC-heterojunction solar cells : towards 22% efficiency on industrial size" 576-579, 2012

      20 이상희, "Investigation of Metal Co-evaporated Copper Seed Layers for Copper-Plated Heterojunction Solar Cells" 한국물리학회 72 (72): 469-475, 2018

      21 Adachi, D., "Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency" 107 (107): 233506-, 2015

      22 De Wolf, S., "Highefficiency silicon heterojunction solar cells : a review" 2 (2): 7-24, 2012

      23 Hernández, J.L., "High efficiency copper electroplated heterojunction solar cells" 655-656, 2012

      24 Papet, P, "Heterojunction solar cells with electroplated Ni/Cu front electrode" 1976-1979, 2013

      25 Yoshikawa, K., "Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology" 173 : 37-42, 2017

      26 Stout, L. E., "Electrodeposition of copper–nickel alloys" 57 (57): 113-129, 1930

      27 Wang, Q., "Efficient heterojunction solar cells on p-type crystal silicon wafers" 96 (96): 013507-, 2010

      28 Mishima, T., "Development status of high-efficiency HIT solar cells" 95 (95): 18-21, 2011

      29 Aguilar, A., "Development of Cu plating for silicon heterojunction solar cells" 1972-1975, 2016

      30 Lee, S.H., "Contact resistivity and adhesion of copper alloy seed layer for copper-plated silicon heterojunction solar cells" 57 (57): 08RB13-, 2018

      31 De Wolf, S., "Boron-doped a-Si : H∕ c-Si interface passivation : degradation mechanism" 91 (91): 112109-, 2007

      32 Sinton, R., "A quasi-steady-state open-circuit voltage method for solar cell characterization" 2000

      33 Heng, J.B., "> 23.1% High efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines" 492-496, 2014

      34 Heng, J. B., "> 23% High-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines" 5 (5): 82-86, 2015

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : Electronic Materials Letters
      외국어명 : Electronic Materials Letters
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-12-29 학회명변경 한글명 : 대한금속ㆍ재료학회 -> 대한금속·재료학회 KCI등재후보
      2008-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.68 0.41 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.89 0.83 0.333 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼