1 Denton, A. R., "Vegard’s law" 43 (43): 3161-, 1991
2 Yu, J., "Tungsten doped indium oxide film : ready for bifacial copper metallization of silicon heterojunction solar cell" 144 : 359-363, 2016
3 Green, T., "The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys" 145 (145): 875-881, 1998
4 Holzwarth, U., "The Scherrer equation versus the’Debye-Scherrer equation’" 6 (6): 534-534, 2011
5 Lee, S. H., "Study of Cu-X alloy seed layer on ITO for copperplated silicon heterojunction solar cells" 87 : 19-23, 2018
6 Munoz, D., "Strategies of cost reduction and high performance on a-Si : H/c-Si heterojunction solar cells : 21% efficiency on monolike substrate" 3071-3073, 2013
7 Schroder, D. K., "Solar cell contact resistance—a review" 31 (31): 637-647, 1984
8 Geissbühler, J., "Silicon heterojunction solar cells with copper-plated grid electrodes : status and comparison with silver thick-film techniques" 4 (4): 1055-1062, 2014
9 Schroder, D.K., "Semiconductor Material and Device Characterization" Wiley 2006
10 Khanna, A., "Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells" 349 : 880-886, 2015
1 Denton, A. R., "Vegard’s law" 43 (43): 3161-, 1991
2 Yu, J., "Tungsten doped indium oxide film : ready for bifacial copper metallization of silicon heterojunction solar cell" 144 : 359-363, 2016
3 Green, T., "The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys" 145 (145): 875-881, 1998
4 Holzwarth, U., "The Scherrer equation versus the’Debye-Scherrer equation’" 6 (6): 534-534, 2011
5 Lee, S. H., "Study of Cu-X alloy seed layer on ITO for copperplated silicon heterojunction solar cells" 87 : 19-23, 2018
6 Munoz, D., "Strategies of cost reduction and high performance on a-Si : H/c-Si heterojunction solar cells : 21% efficiency on monolike substrate" 3071-3073, 2013
7 Schroder, D. K., "Solar cell contact resistance—a review" 31 (31): 637-647, 1984
8 Geissbühler, J., "Silicon heterojunction solar cells with copper-plated grid electrodes : status and comparison with silver thick-film techniques" 4 (4): 1055-1062, 2014
9 Schroder, D.K., "Semiconductor Material and Device Characterization" Wiley 2006
10 Khanna, A., "Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells" 349 : 880-886, 2015
11 Kleider, J. -P., "Revisiting the theory and usage of junction capacitance : application to high efficiency amorphous/crystalline silicon heterojunction solar cells" 135 : 8-16, 2015
12 Baskaran, I., "Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties" 60 (60): 1990-1995, 2006
13 Li, Z., "Patterning for plated heterojunction cells" 67 : 76-83, 2015
14 Ghosh, S., "Nanocrystalline Ni–Cu alloy plating by pulse electrolysis" 126 (126): 48-63, 2000
15 Fernandez, F.Z., "Metallisation for silicon heterojunction solar cells" 1669-1672, 2010
16 Chassaing, E., "Mechanism of copper–nickel alloy electrodeposition" 17 (17): 1267-1280, 1987
17 Varea, A., "Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films" 7 : 1288-1302, 2012
18 Rodofili, A., "Laser-transferred Niv-seed for the metallization of silicon heterojunction solar cells by Cuplating" 402-405, 2017
19 Muñoz, D., "Key aspects on development of high effi -ciency heterojunction and IBC-heterojunction solar cells : towards 22% efficiency on industrial size" 576-579, 2012
20 이상희, "Investigation of Metal Co-evaporated Copper Seed Layers for Copper-Plated Heterojunction Solar Cells" 한국물리학회 72 (72): 469-475, 2018
21 Adachi, D., "Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency" 107 (107): 233506-, 2015
22 De Wolf, S., "Highefficiency silicon heterojunction solar cells : a review" 2 (2): 7-24, 2012
23 Hernández, J.L., "High efficiency copper electroplated heterojunction solar cells" 655-656, 2012
24 Papet, P, "Heterojunction solar cells with electroplated Ni/Cu front electrode" 1976-1979, 2013
25 Yoshikawa, K., "Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology" 173 : 37-42, 2017
26 Stout, L. E., "Electrodeposition of copper–nickel alloys" 57 (57): 113-129, 1930
27 Wang, Q., "Efficient heterojunction solar cells on p-type crystal silicon wafers" 96 (96): 013507-, 2010
28 Mishima, T., "Development status of high-efficiency HIT solar cells" 95 (95): 18-21, 2011
29 Aguilar, A., "Development of Cu plating for silicon heterojunction solar cells" 1972-1975, 2016
30 Lee, S.H., "Contact resistivity and adhesion of copper alloy seed layer for copper-plated silicon heterojunction solar cells" 57 (57): 08RB13-, 2018
31 De Wolf, S., "Boron-doped a-Si : H∕ c-Si interface passivation : degradation mechanism" 91 (91): 112109-, 2007
32 Sinton, R., "A quasi-steady-state open-circuit voltage method for solar cell characterization" 2000
33 Heng, J.B., "> 23.1% High efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines" 492-496, 2014
34 Heng, J. B., "> 23% High-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines" 5 (5): 82-86, 2015