RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Self-powered fall detection system using pressure sensing triboelectric nanogenerators

      한글로보기

      https://www.riss.kr/link?id=A107741289

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>With the rapidly increasing number of older people in our societies, fall detection is becoming more important: Older adults may fall at home when they are alone and they may not be found in tim...

      <P><B>Abstract</B></P> <P>With the rapidly increasing number of older people in our societies, fall detection is becoming more important: Older adults may fall at home when they are alone and they may not be found in time for them to get help. In addition, a fall itself can cause serious injuries such as lacerations, fractures and hematomas. Although many previous studies have been reported on various fall detection technologies based on wearable sensors, the inconvenience of wearing them is problematic. Vision or ambient based methods may be alternatives, but high cost and complex installation process limit applicable areas. We propose a cost-effective, ambient-based fall detection system based on a pressure sensing triboelectric nanogenerator (TENG) array. Apart from simple observation of output signal waveforms according to different actions, key technologies, including appropriate filtering and distinguishing between falls and daily activities, are demonstrated with data acquisition from 48 daily activities and 48 falls by eight participants. The proposed system achieves a classification accuracy of 95.75% in identifying actual falls. Due to its low cost, easy installation and notable accuracy, the proposed system can be immediately applied to smart homes and smart hospitals to prevent additional injuries caused by falls.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A self-powered fall detection system was demonstrated using a TENG array. </LI> <LI> A statistical study over eight participants was carried out for general application. </LI> <LI> The maximum number of activated cells was used as a feature for classification. </LI> <LI> The proposed fall detection system had a high classification accuracy of 95.75%. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼