RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상 = Improvement of PM10 Forecasting Performance using Membership Function and DNN

      한글로보기

      https://www.riss.kr/link?id=A106369483

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, we developed a PM10 forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the PM10 concentrations of the next 3 days in the Seoul area by using the weather and air quality obse...

      In this study, we developed a PM10 forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the PM10 concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)’s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration PM10 compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration PM10. To improve this, we propose Julian date membership function as inputs of the PM10 forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration PM10.
      As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration PM10 forecasts.

      더보기

      참고문헌 (Reference)

      1 배효식, "대기질 예보의 성능 향상을 위한 커널 삼중대각 희소행렬을 이용한 고속 자료동화" 한국멀티미디어학회 20 (20): 363-370, 2017

      2 Y. Bengio, "Representation Learning : A Review and New Perspectives" 35 (35): 1798-1828, 2013

      3 M. Cai, "Prediction of Hourly Air Pollutant Concentrations Near Urban Arterials using Artificial Neural Network Approach" 14 (14): 32-41, 2009

      4 A. B. Chelani, "Prediction of Ambient PM10 and Toxic Metals using Artificial Neural Networks" 52 (52): 805-810, 2002

      5 W. Lu, "Potential Assessment of A Neural Network Model with PCA/RBF Approach for Forecasting Pollutant Trends in Mong Kok Urban Air, Hong Kong" 96 (96): 79-87, 2004

      6 A. Chaloulakou, "Neural Network and Multiple Regression Models for PM10 Prediction in Athens : A Comparative Assessment" 53 (53): 1183-1190, 2003

      7 I. G. McKendry, "Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10and PM2.5) Forecasting" 52 (52): 1096-1101, 2002

      8 J. Schmidhuber, "Deep Learning in Neural Networks: An Overview" 61 (61): 85-117, 2015

      9 X. Feng, "Artificial Neural Networks Forecasting of PM2. 5 Pollution Using Air Mass Trajectory Based Geographic Model and Wavelet Transformation" 107 : 118-128, 2015

      10 G. Grivas, "Artificial Neural Network Models for Prediction of PM10Hourly Concentrations, in The Greater Area of Athens, Greece" 40 (40): 1216-1229, 2006

      1 배효식, "대기질 예보의 성능 향상을 위한 커널 삼중대각 희소행렬을 이용한 고속 자료동화" 한국멀티미디어학회 20 (20): 363-370, 2017

      2 Y. Bengio, "Representation Learning : A Review and New Perspectives" 35 (35): 1798-1828, 2013

      3 M. Cai, "Prediction of Hourly Air Pollutant Concentrations Near Urban Arterials using Artificial Neural Network Approach" 14 (14): 32-41, 2009

      4 A. B. Chelani, "Prediction of Ambient PM10 and Toxic Metals using Artificial Neural Networks" 52 (52): 805-810, 2002

      5 W. Lu, "Potential Assessment of A Neural Network Model with PCA/RBF Approach for Forecasting Pollutant Trends in Mong Kok Urban Air, Hong Kong" 96 (96): 79-87, 2004

      6 A. Chaloulakou, "Neural Network and Multiple Regression Models for PM10 Prediction in Athens : A Comparative Assessment" 53 (53): 1183-1190, 2003

      7 I. G. McKendry, "Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10and PM2.5) Forecasting" 52 (52): 1096-1101, 2002

      8 J. Schmidhuber, "Deep Learning in Neural Networks: An Overview" 61 (61): 85-117, 2015

      9 X. Feng, "Artificial Neural Networks Forecasting of PM2. 5 Pollution Using Air Mass Trajectory Based Geographic Model and Wavelet Transformation" 107 : 118-128, 2015

      10 G. Grivas, "Artificial Neural Network Models for Prediction of PM10Hourly Concentrations, in The Greater Area of Athens, Greece" 40 (40): 1216-1229, 2006

      11 G. Corani, "Air Quality Prediction in Milan : Feed-Forward Neural Networks, Pruned Neural Networks and Lazy Learning" 185 (185): 513-529, 2005

      12 NIER, "A Study of Data Accuracy Improvement for National Air Quality Forecasting(I II )" NIER 2016

      13 NIER, "A Study of Construction of Air Quality Forecasting System using Artificial Intelligence(I)" NIER 2017

      14 J. Fan, "A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN" IV-4/W2 : 15-22, 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.61 0.61 0.56
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.49 0.44 0.695 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼