RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      계층적인 잠재 표현 기반의 사이버 범죄 신조어 자동 탐지 프레임워크 = Hierarchical Latent Representation-based Framework for Automatic Detection of Cybercrime Slang

      한글로보기

      https://www.riss.kr/link?id=A108873566

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cybercriminals constantly produce and use slang by adding criminal meanings to existing words or replacing them with similar words for communication. Continuous monitoring and manual work are required to respond to this, and a large amount of labeled training data is required when using deep learning. However, the ability to collect a large amount of training data is limited because direct labeling by a person requires a lot of time and money and proceeds secretly due to the nature of cybercrime. Thus, we develop a framework based on an autoencoder and propose a method to effectively detect contextual cybercrime slang and neologisms through hierarchical latent vector similarity comparisons to address these limitations. Experiments using a cybercrime post dataset showed that the framework had an accuracy of up to 99.1% at a similarity threshold of 0.5.
      번역하기

      Cybercriminals constantly produce and use slang by adding criminal meanings to existing words or replacing them with similar words for communication. Continuous monitoring and manual work are required to respond to this, and a large amount of labeled ...

      Cybercriminals constantly produce and use slang by adding criminal meanings to existing words or replacing them with similar words for communication. Continuous monitoring and manual work are required to respond to this, and a large amount of labeled training data is required when using deep learning. However, the ability to collect a large amount of training data is limited because direct labeling by a person requires a lot of time and money and proceeds secretly due to the nature of cybercrime. Thus, we develop a framework based on an autoencoder and propose a method to effectively detect contextual cybercrime slang and neologisms through hierarchical latent vector similarity comparisons to address these limitations. Experiments using a cybercrime post dataset showed that the framework had an accuracy of up to 99.1% at a similarity threshold of 0.5.

      더보기

      참고문헌 (Reference)

      1 박준영 ; 채명수 ; 정성관, "실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안" 한국정보과학회 22 (22): 455-460, 2016

      2 문현지 ; 박현민 ; 김기범, "보이스피싱 범죄조직의 은어 사용과 AI 기술을 적용한 수사상 활용방안 연구" 경찰대학 21 (21): 137-160, 2021

      3 L. Cheng, "Unsupervised Cyberbullying Detection via Time-Informed Gaussian Mixture Model"

      4 L. Ranaldi, "THE DARK SIDE OF THE LANGUAGE : PRE-TRAINED TRANSFORMERS IN THE DARKNET"

      5 P. Vincent, "Stacked Denoising Autoencoders : Learning Useful Representations in a Deep Network with a Local Denoising Criterion" 11 (11): 3371-3408, 2010

      6 "Smart Policing Big Data Platform"

      7 "Smart Policing Big Data Platform"

      8 "Smart Policing Big Data Platform"

      9 "Smart Policing Big Data Platform"

      10 최은정 ; 이수련 ; 권혜민 ; 김명주 ; 이인수 ; 이승훈, "SNS 빅데이터 및 검색포털 트렌드와 마약류 사건 통계간의 비교 및 의미분석 연구" 한국디지털정책학회 19 (19): 231-238, 2021

      1 박준영 ; 채명수 ; 정성관, "실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안" 한국정보과학회 22 (22): 455-460, 2016

      2 문현지 ; 박현민 ; 김기범, "보이스피싱 범죄조직의 은어 사용과 AI 기술을 적용한 수사상 활용방안 연구" 경찰대학 21 (21): 137-160, 2021

      3 L. Cheng, "Unsupervised Cyberbullying Detection via Time-Informed Gaussian Mixture Model"

      4 L. Ranaldi, "THE DARK SIDE OF THE LANGUAGE : PRE-TRAINED TRANSFORMERS IN THE DARKNET"

      5 P. Vincent, "Stacked Denoising Autoencoders : Learning Useful Representations in a Deep Network with a Local Denoising Criterion" 11 (11): 3371-3408, 2010

      6 "Smart Policing Big Data Platform"

      7 "Smart Policing Big Data Platform"

      8 "Smart Policing Big Data Platform"

      9 "Smart Policing Big Data Platform"

      10 최은정 ; 이수련 ; 권혜민 ; 김명주 ; 이인수 ; 이승훈, "SNS 빅데이터 및 검색포털 트렌드와 마약류 사건 통계간의 비교 및 의미분석 연구" 한국디지털정책학회 19 (19): 231-238, 2021

      11 X. Xiaofen, "SAE+ LSTM: A New framework for emotion recognition from multi channel EEG" 13 (13): 2019

      12 X. Shiqiang, "Re search on Argument Text Clustering Method Based on Autoencoder" 21 (21): 181-192, 2021

      13 Z. Zhao, "LSHWE : improving similarity-based word embedding with locality sensitive hashing for cyberbullying detection" 8 (8): 328-339, 2016

      14 "KOREAN NATIONAL POLICE AGENCY"

      15 B. Yoshuna, "Generalized Denoising Auto-Encoders as Generative Models" 26 : 2013

      16 G. Pengfei, "Dual Adversarial Autoencoders for Clustering" 21 (21): 1417-1424, 2020

      17 H. AL-Saif, "Detecting and Classifying Crimes from Arabic Twitter Posts using Text Mining Techniques" 9 (9): 377-387, 2018

      18 A. Muneer, "Cyberbullying Detection on Social Media Using Stacking Ensemble Learning and Enhanced BERT" 14 (14): 467-, 2023

      19 R. Zhao, "Cyberbullying Detection Based on Semantic-Enhanced Marginalized Denoising Auto-Encoder" 2020

      20 H. Zhou, "Cross-Lingual Sentiment Classification Based on Denoising Autoencoder" 496 : 181-192, 2014

      21 S. Sathyadevan, "Crime analysis and prediction using data mining" 9 (9): 406-412, 2014

      22 Z. Beiji, "Crime Hotspot Detection and Monitoring Using Video Based Event Modeling and Mapping Techniques" 10 (10): 962-969, 2017

      23 I. Jayaweera, "Crime Analytics : Analysis of Crimes Through Newspaper Articles" 277-282, 2015

      24 W. Yasi, "Auto-encoder based dimensionality reduction" 19 : 232-242, 2016

      25 D. P. Kingma, "Auto-Encoding Variational Bayes"

      26 S. Lal, "Analysis and Classification of Crime Tweets" 167 : 1911-1919, 2022

      27 K. Zahra, "Analysis and Classification of Crime Tweets" 11-16, 2018

      28 A. Makhzani, "Adversarial Autoencoders"

      29 "AIHub"

      30 L. Ruizhe, "A stable variational autoencoder for text modelling" 13 (13): 594-599, 2019

      31 G. Deepak, "A knowledge centric hybridized approach for crime classification incorporating deep bi-LSTM neural network" 80 (80): 28061-28085, 2021

      32 K. B. Sundhara Kumar, "A Novel Hybrid RNN-ELM Architecture for Crime Classification" 876-882, 2020

      33 E. A. Emon, "A Deep Learning Approach to Detect Abusive Bengali Text" 1-5, 2019

      34 B. Kim, "2022 Drug Crime White Paper" Supreme (Public) Prosecutors' Office 4-, 2023

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼