RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      합성곱 신경망을 이용한 다층 구조물의 층강성 예측

      한글로보기

      https://www.riss.kr/link?id=A108562028

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The method for predicting the story stiffness of building structures using convolutional neural network is proposed, and it is verified using a five-story structure example. A random number generator is used to determine the stiffness value of each story, and a total of 1000 models are obtained by repeating this independently. Linear time history analysis is performed on the generated model to collect data for training and testing. The acceleration history response of the top is wavelet-transformed and used as an input image, and the stiffness values of each story used for the corresponding modeling are set as the output value. As a result of applying the example, it is found that the proposed method predicts the behavior and dynamic characteristics of structures similarly, although the degree of error is different for each variable. To reduce this error, a method of applying a genetic algorithm to the predicted value is presented, and the improvement effect of this is confirmed.
      번역하기

      The method for predicting the story stiffness of building structures using convolutional neural network is proposed, and it is verified using a five-story structure example. A random number generator is used to determine the stiffness value of each st...

      The method for predicting the story stiffness of building structures using convolutional neural network is proposed, and it is verified using a five-story structure example. A random number generator is used to determine the stiffness value of each story, and a total of 1000 models are obtained by repeating this independently. Linear time history analysis is performed on the generated model to collect data for training and testing. The acceleration history response of the top is wavelet-transformed and used as an input image, and the stiffness values of each story used for the corresponding modeling are set as the output value. As a result of applying the example, it is found that the proposed method predicts the behavior and dynamic characteristics of structures similarly, although the degree of error is different for each variable. To reduce this error, a method of applying a genetic algorithm to the predicted value is presented, and the improvement effect of this is confirmed.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 1.1 연구배경
      • 1.2 연구범위 및 방법
      • 2. 이론
      • Abstract
      • 1. 서론
      • 1.1 연구배경
      • 1.2 연구범위 및 방법
      • 2. 이론
      • 2.1 합성곱 신경망
      • 2.2 웨이블릿 변환
      • 2.3 유전자 알고리즘
      • 3. 합성곱 신경망을 이용한 층강성 예측 방법
      • 4. 예제 검증
      • 4.1 개요
      • 4.2 결과 분석
      • 5. 결론
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼