RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      얼굴 회전에 강인한 다인종 얼굴 검출 = Rotation Invariant Multiracial Face Detection

      한글로보기

      https://www.riss.kr/link?id=A82294833

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은 다양한 상황이 발생하기 때문에 쉽지 않다. 본 논문에서는 다양한 문제 중 얼굴이 회전되었을 때 얼굴을 검출하는 방법에 초점을 맞추었다. 먼저, 다인종 얼굴 데이타로부터 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아낸 뒤, 후보영역에서 두 눈을 검출하다. 두 눈을 이용하여 회전각도를 찾아내고 베이지안 분류기를 이용하여 정면얼굴이 되도록 다시 회전시키는 방법을 이용하였다. 다인종에 데이타를 이용한 회전된 얼굴에 대해서 얼굴검출 알고리즘을 실험하여 결과를 제시하였다.
      번역하기

      얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은...

      얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은 다양한 상황이 발생하기 때문에 쉽지 않다. 본 논문에서는 다양한 문제 중 얼굴이 회전되었을 때 얼굴을 검출하는 방법에 초점을 맞추었다. 먼저, 다인종 얼굴 데이타로부터 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아낸 뒤, 후보영역에서 두 눈을 검출하다. 두 눈을 이용하여 회전각도를 찾아내고 베이지안 분류기를 이용하여 정면얼굴이 되도록 다시 회전시키는 방법을 이용하였다. 다인종에 데이타를 이용한 회전된 얼굴에 대해서 얼굴검출 알고리즘을 실험하여 결과를 제시하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The face detection is a necessary first-step in the face recognition systems, with the purpose of localizing and extracting face regions from input images. But it is not a simple problem, because faces have many variations such as scale, rotation and lighting condition. In this paper, we propose a novel method to detect not only frontal faces but also partial rotated faces in still images. Firstly, we produce the eye candidates in the sub-regions of an input image to detect rotated faces. Secondly, the eye candidates are used to measure the angles of rotated faces. Thirdly, we are able to derotate the rotated face then put it to Bayesian classifier. We make an experiment with rotated multiracial face and show the good results in this paper.
      번역하기

      The face detection is a necessary first-step in the face recognition systems, with the purpose of localizing and extracting face regions from input images. But it is not a simple problem, because faces have many variations such as scale, rotation and ...

      The face detection is a necessary first-step in the face recognition systems, with the purpose of localizing and extracting face regions from input images. But it is not a simple problem, because faces have many variations such as scale, rotation and lighting condition. In this paper, we propose a novel method to detect not only frontal faces but also partial rotated faces in still images. Firstly, we produce the eye candidates in the sub-regions of an input image to detect rotated faces. Secondly, the eye candidates are used to measure the angles of rotated faces. Thirdly, we are able to derotate the rotated face then put it to Bayesian classifier. We make an experiment with rotated multiracial face and show the good results in this paper.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 후보 영역 검출 및 회전각 측정
      • 3. 베이지안 분류기
      • 요약
      • Abstract
      • 1. 서론
      • 2. 후보 영역 검출 및 회전각 측정
      • 3. 베이지안 분류기
      • 4. 실험 및 결과 고찰
      • 5. 결론 및 향후 과제
      • 참고문헌
      더보기

      참고문헌 (Reference)

      1 "Rotation- invariant face detection using angular projections" 40 (40): 2004

      2 "Rotation invariant neural network-based face detection" 963-963, 1998

      3 "Rotated face detection in color images using radial template (RT)" 3 : 137-140, 2003

      4 "Probabilistic visual learning for object representation" 19 (19): 696-710, 2003

      5 "Neural network-based face detection" 20 (20): 23-38, 1998

      6 "Neural network-based face detection" 20 (20): 23-38, 1998

      7 "Face detection in color images" 24 (24): 696-706, 2002

      8 "A Bayesian discriminating features method for face detection" 25 (25): 725-740, 2003

      1 "Rotation- invariant face detection using angular projections" 40 (40): 2004

      2 "Rotation invariant neural network-based face detection" 963-963, 1998

      3 "Rotated face detection in color images using radial template (RT)" 3 : 137-140, 2003

      4 "Probabilistic visual learning for object representation" 19 (19): 696-710, 2003

      5 "Neural network-based face detection" 20 (20): 23-38, 1998

      6 "Neural network-based face detection" 20 (20): 23-38, 1998

      7 "Face detection in color images" 24 (24): 696-706, 2002

      8 "A Bayesian discriminating features method for face detection" 25 (25): 725-740, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KIISE : Software and Applications KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-10-17 학술지명변경 한글명 : 정보과학회논문지 : 소프트웨어 및 응용</br>외국어명 : Journal of KISS : Software and Applications KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼