<P>The search for ways to synthesize single wall carbon nanotubes (SWCNT) of a given electronic type in a controlled manner persists despite great challenges because the potential rewards are huge, in particular as a material beyond silicon. In ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107481075
2015
-
SCOPUS,SCIE
학술저널
5964-5973(10쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The search for ways to synthesize single wall carbon nanotubes (SWCNT) of a given electronic type in a controlled manner persists despite great challenges because the potential rewards are huge, in particular as a material beyond silicon. In ...
<P>The search for ways to synthesize single wall carbon nanotubes (SWCNT) of a given electronic type in a controlled manner persists despite great challenges because the potential rewards are huge, in particular as a material beyond silicon. In this work we take a systematic look at three primary aspects of semiconducting enriched SWCNT grown by chemical vapor deposition. The role of catalyst choice, substrate, and feedstock mixture are investigated. In terms of semiconducting yield enhancement, little influence is found from either the binary catalyst or substrate choice. However, a very clear enrichment is found as one adds nominal amounts of methanol to an ethanol feedstock. Yields of up to 97% semiconducting SWCNT are obtained. These changes are attributed to two known etchant processes. In the first, metal SWCNT are preferentially etched. In the second, we reveal etchants also preferentially etch small diameter tubes because they are more reactive. The etchants are confirmed to have a dual role, to preferentially etch metallic tubes and narrow diameter tubes (both metallic and semiconducting) which results in a narrowing of the SWCNT diameter distribution.</P><P><B>Graphic Abstract</B>
<IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/cmatex/2015/cmatex.2015.27.issue-17/acs.chemmater.5b02037/production/images/medium/cm-2015-02037h_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/cm5b02037'>ACS Electronic Supporting Info</A></P>
Nucleation and Growth of the HfO2 Dielectric Layer for Graphene-Based Devices