RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Fielding a Structural Health Monitoring System on Legacy Military Aircraft = a Business Perspective

      한글로보기

      https://www.riss.kr/link?id=A101718145

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can b...

      An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Structural Integrity Concepts of Military Aircraft
      • 3. Potential SHM Business Case
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Structural Integrity Concepts of Military Aircraft
      • 3. Potential SHM Business Case
      • 4. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 C. F. Tiffany, "Threats to aircraft structural safety, including a compendium of selected structural accidents/incidents" Aeronautical Systems Center

      2 J. B. De Jonge, "The requirement of damage tolerance; an analysis of damage tolerance requirements with specific reference to MIL-A-83444" NLR 1976

      3 U. S. Department of Defense, "Revised damage tolerance requirements for slow crack growth design concepts for metallic structures, USAF Structures Bulletin EN-SB-08-002"

      4 U. S. Department of Defense, "Revised damage tolerance requirements for fail-safe metallic structures, USAF Structures Bulletin EN-SB-08-001, Revision A"

      5 D. Roach, "Real time crack detection using mountable comparative vacuum monitoring sensors" 국제구조공학회 5 (5): 317-328, 2009

      6 M. E. Ibrahim, "Monitoring of fatigue cracks using permanently-mounted conformable eddy current sensors" 33 : 2009

      7 N. Goldfine, "MWM®-array electromagnetic techniques for crack sizing, weld assessment, thickness measurement, and mechanical damage profilometry" JENTEK Sensors, Inc 2012

      8 M. J. Bos, "Load monitoring and structural health monitoring within the Royal Netherlands Air Force, NLR Technical Publication NLR-TP-2013-479"

      9 U.S. Department of Defense, "In-service inspection flaw assumptions for metallic structures, USAF Structures Bulletin EN-SB-08-012, Revision C"

      10 K. Jones, "Challenges and lessons learned from conformal eddy current probe acquisition and implementatio" 2012

      1 C. F. Tiffany, "Threats to aircraft structural safety, including a compendium of selected structural accidents/incidents" Aeronautical Systems Center

      2 J. B. De Jonge, "The requirement of damage tolerance; an analysis of damage tolerance requirements with specific reference to MIL-A-83444" NLR 1976

      3 U. S. Department of Defense, "Revised damage tolerance requirements for slow crack growth design concepts for metallic structures, USAF Structures Bulletin EN-SB-08-002"

      4 U. S. Department of Defense, "Revised damage tolerance requirements for fail-safe metallic structures, USAF Structures Bulletin EN-SB-08-001, Revision A"

      5 D. Roach, "Real time crack detection using mountable comparative vacuum monitoring sensors" 국제구조공학회 5 (5): 317-328, 2009

      6 M. E. Ibrahim, "Monitoring of fatigue cracks using permanently-mounted conformable eddy current sensors" 33 : 2009

      7 N. Goldfine, "MWM®-array electromagnetic techniques for crack sizing, weld assessment, thickness measurement, and mechanical damage profilometry" JENTEK Sensors, Inc 2012

      8 M. J. Bos, "Load monitoring and structural health monitoring within the Royal Netherlands Air Force, NLR Technical Publication NLR-TP-2013-479"

      9 U.S. Department of Defense, "In-service inspection flaw assumptions for metallic structures, USAF Structures Bulletin EN-SB-08-012, Revision C"

      10 K. Jones, "Challenges and lessons learned from conformal eddy current probe acquisition and implementatio" 2012

      11 K. Pipe, "Barriers to implementation of CBM" NATO

      12 S. McMillan, "Alleviating maintenance burden; converting F-16 fleet management from slow crack growth to fail-safety" 2012

      13 U. S. Department of Defense, "Airplane Damage Tolerance Requirements" MIL 1974

      14 U. S. Department of Defense, "Aircraft Structures. Joint Service Specification Guide"

      15 F. P. Grooteman, "A stochastic approach to determine lifetimes and inspection schemes for aircraft components" 30 (30): 138-149, 2008

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.36 0.36 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.467 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼