RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Molybdenum (Mo) transporter genes in Panicoideae species: a genome-wide evolution study

      한글로보기

      https://www.riss.kr/link?id=A108139294

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Molybdenum (Mo) is one important mineral element for plants because it participates actively in many metabolic essential functions like the synthesis of molybdenum cofactor and nitrogen metabolism. Mo is available on soil in an anionic form, and its a...

      Molybdenum (Mo) is one important mineral element for plants because it participates actively in many metabolic essential functions like the synthesis of molybdenum cofactor and nitrogen metabolism. Mo is available on soil in an anionic form, and its activity increases with pH elevation. Few studies in the literature reported the identifcation and characterization of Mo transporter genes. Given the above, we describe a comprehensive in silico analysis of Mo transporters in six Panicoideae species. We identifed 15 candidates genes associated with Mo transporters. The subcellular location shows that all predicted genes were present in the plasma membrane. The genomic structure revealed that most of the Mo transporters genes showed no introns, while two sequences of P. virgatum presented one intron. Five conserved motifs and nine putative transmembrane domains were identifed. Phylogenetic analysis revealed two groups (A1 and A2), showing close or conserved phylogenetic relationships. Synteny analysis identifed 45 pairs of syntenic Mo orthologous among the six genomes of Panicoideae species, and purifying selection played a critical role in the evolution of Mo transporter genes. Eforts need to be undertaken to understand and improve molybdenum uptake and utilization in Panicoideae species for the sustainability of these species.
      This study will serve as a biotechnological basis for the characterization of candidate genes (Mo) involved in the regulation of gene expression under adverse conditions, allowing the development of future strategies to ensure greater sustainability of the important species of Panicoideae.

      더보기

      참고문헌 (Reference)

      1 Baxter I, "Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter(MOT1)" 4 (4): e1000004-, 2008

      2 El-Gebali S, "The Pfam protein families database in 2019" 47 (47): D427-D432, 2018

      3 Finn RD, "The Pfam protein families database" 42 : D222-30, 2014

      4 Guo C, "The Coix genome provides insights into panicoideae evolution and papery hull domestication" 13 (13): 309-320, 2020

      5 Hippler FWR, "Revisiting nutrient management for Citrus production: to what extent does molybdenum affect nitrogen assimilation of trees?" 225 : 462-470, 2017

      6 Yu CS, "Prediction of protein subcellular localization" 64 : 643-651, 2006

      7 Zhang Y, "Post-glacial evolution of Panicum virgatum, centers of diversity and gene pools revealed by SSR markers and cpDNA sequences" 139 : 933-948, 2011

      8 Postel D, "PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences" 30 : 325-327, 2002

      9 Li P, "Plant transporters : roles in stress responses and effects on growth and development" 93 : 253-266, 2021

      10 Tejada-Jimenez M, "Plant micronutrient use efficiency. Molecular and genomic perspectives in crop plants" Academic Press, Elsevier 137-159, 2018

      1 Baxter I, "Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter(MOT1)" 4 (4): e1000004-, 2008

      2 El-Gebali S, "The Pfam protein families database in 2019" 47 (47): D427-D432, 2018

      3 Finn RD, "The Pfam protein families database" 42 : D222-30, 2014

      4 Guo C, "The Coix genome provides insights into panicoideae evolution and papery hull domestication" 13 (13): 309-320, 2020

      5 Hippler FWR, "Revisiting nutrient management for Citrus production: to what extent does molybdenum affect nitrogen assimilation of trees?" 225 : 462-470, 2017

      6 Yu CS, "Prediction of protein subcellular localization" 64 : 643-651, 2006

      7 Zhang Y, "Post-glacial evolution of Panicum virgatum, centers of diversity and gene pools revealed by SSR markers and cpDNA sequences" 139 : 933-948, 2011

      8 Postel D, "PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences" 30 : 325-327, 2002

      9 Li P, "Plant transporters : roles in stress responses and effects on growth and development" 93 : 253-266, 2021

      10 Tejada-Jimenez M, "Plant micronutrient use efficiency. Molecular and genomic perspectives in crop plants" Academic Press, Elsevier 137-159, 2018

      11 Goodstein DM, "Phytozome, a comparative platform for green plant genomics" 40 : 1178-1186, 2012

      12 Sharma A, "Phytohormones regulate accumulation of osmolytes under abiotic stress" 9 : 285-, 2019

      13 Wani SH, "Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants" 4 : 162-176, 2016

      14 Zhao T, "Network approaches for plant phylogenomic synteny analysis" 36 : 129-134, 2017

      15 Huang XY, "Natural variation in a molybdate transporter controls grain molybdenum concentration in rice" 221 (221): 1983-1997, 2019

      16 Bittner F, "Molybdenum metabolism in plants and crosstalk to iron" 5 : 28-, 2014

      17 Arnon DI, "Molybdenum as an essential element for higher plants" 14 (14): 599-602, 1939

      18 Rana M, "Molybdenum as an essential element for crops : an overview" 24 : 18535-, 2020

      19 Tejada-Jiménez M, "Medicago truncatula Molybdate Transporter type 1(MtMOT1. 3)is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency" 216 (216): 1223-1235, 2017

      20 Kumar S, "MEGA7 : molecular evolutionary genetics analysis version 7. 0 for bigger datasets" 337 : 1870-1874, 2016

      21 Compton EL, "Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains" 286 (286): 27058-27067, 2011

      22 Zhang Z, "KaKs_Calculator : calculating Ka and Ks through model selection and model averaging" 4 : 259-263, 2006

      23 Vatansever R, "In silico identification and comparative analysis of molybdenum(Mo)transporter genes in plants" 39 : 87-99, 2016

      24 Pandey S, "In silico analysis of cis acting regulatory elements CAREs in upstream regions of ascorbate glutathione pathway genes from Oryza sativa" 4 (4): 2-, 2015

      25 Gasber A, "Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate" 13 (13): 710-718, 2011

      26 Muthamilarasan M, "Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant Foxtail Millet(Setaria italica L. )" 9 (9): e109920-, 2014

      27 Wang X, "Identification and characterization of the NPF, NRT2 and NRT3 in spinach" 158 : 297-307, 2021

      28 Bohra A, "Genomic interventions for sustainable agriculture" 18 : 2388-2405, 2020

      29 Qiao X, "Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear(Pyrus bretschneideri)and five other Rosaceae species" 15 : 12-, 2015

      30 Altschul SF, "Gapped BLAST and PSI-BLAST : A new generation of protein database search programs" 25 : 3389-3402, 1997

      31 Hu B, "GSDS 2. 0, an upgraded gene feature visualization server" 31 (31): 1296-1297, 2015

      32 Kellogg EA, "Flowering plants. Monocots. The families and genera of vascular plants" Springer 271-345, 2015

      33 von Wittgenstein NJ, "Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants" 14 : 11-, 2014

      34 Liu H, "Evolution of the R2R3-MYB gene family in six Rosaceae species and expression in woodland strawberries" 18 (18): 2753-2770, 2019

      35 Ide Y, "Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana" 62 (62): 1483-1497, 2011

      36 Morrell PL, "Crop genomics : advances and applications" 13 : 85-96, 2012

      37 Puranik S, "Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in Foxtail Millet(Setaria italica L. )" 8 (8): e64594-, 2013

      38 Nie X, "Complete chloroplast genome sequence of Broomcorn Millet(Panicum miliaceum L. )and comparative analysis with other Panicoideae species" 8 (8): 159-, 2018

      39 Krzywinski M, "Circos : an information aesthetic for comparative genomics" 19 (19): 1639-1645, 2009

      40 dos Santos TB, "An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots : insights on nitrogen starvation responses" 19 (19): 151-169, 2019

      41 de Leão RM, "An in silico mining of the ammonium transporter gene family in Ananas comosus L" 16 (16): 10-24, 2020

      42 Tomatsu H, "An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil" 104 (104): 18807-18812, 2007

      43 Tejada-Jiménez M, "A high-affinity molybdate transporter in eukaryotes" 104 (104): 20126-20130, 2007

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2016-04-01 평가 SCOPUS 등재 (기타) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.09 0.09 0.11
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.12 0.11 0.226 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼