RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI우수등재

      탄소나노튜브 필름 Li Host의 Lithiophilicity가 리튬메탈 배터리의 성능에 미치는 영향 연구 = Effect of the Lithiophilicity of the Li Host of a Carbon Nanotube Film on the Performance of Li Metal Battery

      한글로보기

      https://www.riss.kr/link?id=A107391815

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Lithium (Li) has gained attention as an anode material because of its high specificcapacity (3860 mAh g-1) and high energy density. However, its commercialization islimited owing to the dendrite growth on the surface of the electrode, which causes sev...

      Lithium (Li) has gained attention as an anode material because of its high specificcapacity (3860 mAh g-1) and high energy density. However, its commercialization islimited owing to the dendrite growth on the surface of the electrode, which causes severaldrawbacks, such as low cycling stability, and safety issues, such as short circuits due to thepenetration of the separator. Li hosts with various structures have been studied to addressthese problems. A 3D-scaffold structured host effectively suppresses the Li dendritegrowth and improves the electrode performance. Carbon nanotube (CNT) is a promisingcandidate material for a Li host owing to its high surface area and excellent electrical conductivity.
      However, the lithiophobicity of CNT makes it difficult to utilize CNT as a Li host. Inthis study, we tried to improve the lithiophilicity of CNT film by direct pre-lithiation methodand studied the effect of lithiophilicity on the performance of Li metal battery. Li could beuniformly plated inside the lithiophilic CNT film in contrast to lithiophobic CNT film, whereit was plated unevenly on the surface. This Li plating behavior was reflected in the performanceof the full cell, in which LiFePO4 (LFP) was used as a cathode. The full cell (LFP∥lithiophilic CNT film) exhibited remarkable cyclability owing to uniform Li plating insidelithiophilic CNT film.

      더보기

      참고문헌 (Reference)

      1 Y. S. Jeong, Soongsil University 2012

      2 C. Yang, "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition Toward Stable Lithium Metal Anode" 29 : 1702714-, 2017

      3 X. Cheng, "Toward Safe Lithium Metal Anode in Rechargeable Batteries : A Review" 117 : 10403-10473, 2017

      4 S. Sheng, "Thickness Variation of Lithium Metal Anode with Cycling" 476 : 228749-, 2020

      5 X. Ke, "Surface Engineering of Commercial Ni Foams for Stable Li Metal Anodes" 23 : 547-555, 2019

      6 L. Tao, "Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting High-Performance Lithium Metal Anodes" 2000585-, 2020

      7 X. Shen, "Super Lithiophilic SEI Derived from Quinones Electrolyte to Guide li Uniform Deposition" 24 : 426-431, 2020

      8 J. Lee, "Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers" 13 : 1701131-, 2017

      9 Z. Sun, "Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes" 30 : 1800884-, 2018

      10 D. Lin, "Reviving the Lithium Metal Anode for High-energy Batteries" 12 : 194-206, 2017

      1 Y. S. Jeong, Soongsil University 2012

      2 C. Yang, "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition Toward Stable Lithium Metal Anode" 29 : 1702714-, 2017

      3 X. Cheng, "Toward Safe Lithium Metal Anode in Rechargeable Batteries : A Review" 117 : 10403-10473, 2017

      4 S. Sheng, "Thickness Variation of Lithium Metal Anode with Cycling" 476 : 228749-, 2020

      5 X. Ke, "Surface Engineering of Commercial Ni Foams for Stable Li Metal Anodes" 23 : 547-555, 2019

      6 L. Tao, "Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting High-Performance Lithium Metal Anodes" 2000585-, 2020

      7 X. Shen, "Super Lithiophilic SEI Derived from Quinones Electrolyte to Guide li Uniform Deposition" 24 : 426-431, 2020

      8 J. Lee, "Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers" 13 : 1701131-, 2017

      9 Z. Sun, "Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes" 30 : 1800884-, 2018

      10 D. Lin, "Reviving the Lithium Metal Anode for High-energy Batteries" 12 : 194-206, 2017

      11 H. Yang, "Recent Progress and Perspective on Lithium Metal Anode Protection" 14 : 199-221, 2018

      12 C. Sun, "Recent Advances in All-solid-state Rechargeable Lithium Batteries" 33 : 363-386, 2017

      13 S. L. H. Rebelo, "Progress in the Raman Spectra Analysis of Covalently Functionalized Multiwalled Carbon Nanotubes : Unraveling Disorder in Graphitic Materials" 18 : 12784-12796, 2016

      14 S. Chi, "Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-free Lithium Metal Anode" 27 : 1700348-, 2017

      15 M. Schulz, "Nanotube Superfiber Materials : Science, Manufacturing, Commercialization" William Andrew 2019

      16 H. Kim, "Metallic Anodes for Next Generation Secondary Batteries" 42 : 9011-9034, 2013

      17 Y. Liu, "Making Li-metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction" 2 : 1-10, 2017

      18 G. Yang, "Lithium Plating and Stripping on Carbon Nanotube Sponge" 19 : 494-499, 2018

      19 W. Xu, "Lithium Metal Anodes for Rechargeable Batteries" 7 : 513-537, 2014

      20 A. Manthiram, "Lithium Battery Chemistries Enabled by Solid-state Electrolytes" 2 : 1-16, 2017

      21 D. Lin, "Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes" 11 : 626-632, 2016

      22 A. Shellikeri, "Investigation of Pre-lithiation in Graphite and Hard-carbon Anodes Using Different Lithium Source Structures" 164 : A3914-, 2017

      23 G. Huang, "In situ Constructing Lithiophilic NiFx Nanosheets on Ni Foam Current Collector for Stable Lithium Metal Anode via a Succinct Fluorination Strategy" 395 : 125122-, 2020

      24 T. T. Zuo, "Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes" 29 : 1700389-, 2017

      25 D. Lu, "Failure Mechanism for Fast-charged Lithium Metal Batteries with Liquid Electrolytes" 5 : 1400993-, 2015

      26 Z. Wang, "Fabrication of High-performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator" 26 : 970-976, 2014

      27 B. Dunn, "Electrical Energy Storage for the Grid : A Battery of Choices" 332 : 928-935, 2011

      28 H. Yuan, "Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–sulfur Batteries" 2 : 1711-1719, 2017

      29 J. Chen, "Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes" 20 : 3403-3410, 2020

      30 S. Lee, "Directlyprelithiated Carbon Nanotube Film for High-performance Flexible Lithium-ion Battery Electrodes" 18 : 2334-2341, 2017

      31 F. Shen, "Direct Growth of 3D Host on Cu Foil for Stable Lithium Metal Anode" 13 : 323-328, 2018

      32 Z. Liang, "Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating" 113 : 2862-2867, 2016

      33 M. Armand, "Building Better Batteries" 451 : 652-657, 2008

      34 S. K. Cho, "Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles" 19 : 5879-5884, 2019

      35 B. Liu, "Advancing Lithium Metal Batteries" 2 : 833-845, 2018

      36 R. Zhang, "Advanced for Lithium Metal Anodes"" 4 : 1600445-, 2017

      37 S. Huang, "A Highly Flexible Semi-tubular Carbon Film for Stable Lithium Metal Anodes in High-performance Batteries" 38 : 504-509, 2017

      38 N. W. Li, "A Flexible Solid Electrolyte Interphase Layer for Long-life Lithium Metal Anodes" 130 : 1521-1525, 2018

      39 Y. Zhang, "A Carbon-based 3D Current Collector with Surface Protection for Li Metal Anode" 10 : 1356-1365, 2017

      40 Q. Li, "3D Porous Cu Current Collector/Li-metal Composite Anode for Stable Lithium-metal Batteries" 27 : 1606422-, 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (등재유지)
      2017-01-01 평가 우수등재학술지 선정 (계속평가)
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-03 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-03-05 학술지명변경 외국어명 : The Korean Fiber Soceity -> Textile Science and Engineering KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.13 0.13 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.17 0.17 0.29 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼