<P>This paper proposes an application of superconducting flywheel energy storages (SFESs) to compensate the power fluctuation of the large scale wind farm. Based on the global interest against global warming, the power capacity of the renewable ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107652992
2012
-
SCOPUS,SCIE
학술저널
5701904-5701904(1쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>This paper proposes an application of superconducting flywheel energy storages (SFESs) to compensate the power fluctuation of the large scale wind farm. Based on the global interest against global warming, the power capacity of the renewable ...
<P>This paper proposes an application of superconducting flywheel energy storages (SFESs) to compensate the power fluctuation of the large scale wind farm. Based on the global interest against global warming, the power capacity of the renewable generation, especially wind generation, has been increased steeply. However, since wind generations depend on the natural wind speed completely, the power output cannot be controlled. The power fluctuation caused by the non-controllable output characteristic may create voltage problem for local system and frequency problem for whole power system. To solve those problems, the hybrid application of the large-capacity battery energy storage system (BESS) and the high-speed superconducting flywheel energy storage system (SFES) are considered in Heangwon wind farm in Cheju Island in Korea. Through the case studies based on the site-measured output data, the optimal power and energy capacity of the BESSs and SFES are figured out.</P>
A Study on the Direct Stability Analysis of Multi-Machine Power System With Resistive SFCL
Worldwide Benchmarking of ITER Internal Tin