RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      경향성 변화에 대응하는 딥러닝 기반 초미세먼지 중기 예측 모델 개발 = Development of a Deep Learning-based Midterm PM2.5 Prediction Model Adapting to Trend Changes

      한글로보기

      https://www.riss.kr/link?id=A109130203

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      초미세먼지, 특히 지름이 2.5㎛ 이하인 PM2.5는 인체 건강과 경제에 큰 피해를 주는 오염물질이다. 본 연구는 대한민국 서울 지역을 중심으로, 2017년부터 2022년까지 자료를 수집하여 PM2.5 데...

      초미세먼지, 특히 지름이 2.5㎛ 이하인 PM2.5는 인체 건강과 경제에 큰 피해를 주는 오염물질이다. 본 연구는 대한민국 서울 지역을 중심으로, 2017년부터 2022년까지 자료를 수집하여 PM2.5 데이터 분석 및 데이터 경향성 변화 추이를 분석하고, PM2.5 중기 예측 모델을 개발하는 것을 목표로 한다. 수집, 생산된 대기질 및 기상 데이터, 재분석 데이터, 수치모델 예측 데이터를 바탕으로, 모델을 학습하고 이를 통합한 경향성 변화에도 대응할 수 있는 앙상블 기법을 제안한다. 본 연구에서 제안하는 앙상블 기법은 PM2.5 농도 예측 성능 면에서 기존 모델 대비 미래 D+3~D+6 예측일 F1 Score 기준 평균 2019년 약 42.16%, 2021년 약 58.92%, 2022년 약 34.79% 높은 성능을 보였다. 제안한 모델은 변화하는 환경 조건에도 성능을 유지함으로써 안정적인 예측을 가능하게 하며, 기존 딥러닝 기반 PM2.5 단기 예측보다 먼 예측을 수행하는 중기 예측 모델을 제시한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and d...

      Fine particulate matter, especially PM2.5 with a diameter of less than 2.5 micrometers, poses significant health and economic risks. This study focuses on the Seoul region of South Korea, aiming to analyze PM2.5 data and trends from 2017 to 2022 and develop a mid-term prediction model for PM2.5 concentrations. Utilizing collected and produced air quality and weather data, reanalysis data, and numerical model prediction data, this research proposes an ensemble evaluation method capable of adapting to trend changes. The ensemble method proposed in this study demonstrated superior performance in predicting PM2.5 concentrations, outperforming existing models by an average F1 Score of approximately 42.16% in 2019, 58.92% in 2021, and 34.79% in 2022 for future 3 to 6-day predictions. The model maintains performance under changing environmental conditions, offering stable predictions and presenting a mid-term prediction model that extends beyond the capabilities of existing deep learning-based short-term PM2.5 forecasts.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼