In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performe...
In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.