RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Lithosphere Structure and Seismic Anisotropy Offshore Eastern North America: Implications for Continental Breakup and Ultra‐Slow Spreading Dynamics

      한글로보기

      https://www.riss.kr/link?id=O111305879

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-9313

      • Online ISSN

        2169-9356

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The breakup of supercontinent Pangea occurred ∼200 Ma forming the Eastern North American Margin (ENAM). Yet, the precise timing and mechanics of breakup and onset of seafloor spreading remain poorly constrained. We investigate the relict lithospher...

      The breakup of supercontinent Pangea occurred ∼200 Ma forming the Eastern North American Margin (ENAM). Yet, the precise timing and mechanics of breakup and onset of seafloor spreading remain poorly constrained. We investigate the relict lithosphere offshore eastern North America using ambient‐noise Rayleigh‐wave phase velocity (12–32 s) and azimuthal anisotropy (17–32 s) at the ENAM Community Seismic Experiment (CSE). Incorporating previous constraints on crustal structure, we construct a shear velocity model for the crust and upper ∼60 km of the mantle beneath the ENAM‐CSE. A low‐velocity lid (VS of 4.4–4.55 km/s) is revealed in the upper 15–20 km of the mantle that extends ∼200 km from the margin, terminating at the Blake Spur Magnetic Anomaly (BSMA). East of the BSMA, velocities are fast (>4.6 km/s) and characteristic of typical oceanic mantle lithosphere. We interpret the low‐velocity lid as stretched continental mantle lithosphere embedded with up to ∼15% retained gabbro. This implies that the BSMA marks successful breakup and onset of seafloor spreading ∼170 Ma, consistent with ENAM‐CSE active‐source studies that argue for breakup ∼25 Myr later than previously thought. We observe margin‐parallel Rayleigh‐wave azimuthal anisotropy (2%–4% peak‐to‐peak) in the lithosphere that approximately correlates with absolute plate motion (APM) at the time of spreading. We hypothesize that lithosphere formed during ultra‐slow seafloor spreading records APM‐modified olivine fabric rather than spreading‐parallel fabric typical of higher spreading rates. This work highlights the importance of present‐day passive margins for improving understanding of the fundamental rift‐to‐drift transition.
      The Eastern North American Margin (ENAM) formed during the breakup of supercontinent Pangea, marking the opening of the Atlantic Ocean. However, details of the timing and mechanics of the breakup are not well understood. The ENAM region provides a fossilized record of this transition from continental rifting to seafloor spreading, informing understanding of the fundamental “rift‐to‐drift” plate‐tectonic process. Using Rayleigh‐waves, we solve for the 3‐D shear velocity structure of the lithosphere offshore North Carolina, revealing a 15–20 km thick low‐velocity “lid” that extends ∼200 km from the margin, terminating at the Blake Spur Magnetic Anomaly. We interpret this as stretched continental lithosphere, which implies that complete breakup of Pangea did not occur directly at the margin but rather ∼200 km seaward. This corresponds to a breakup age of ∼170 Ma, ∼25 Myr later than previously thought. We also observe a directional dependence of Rayleigh‐wave velocities, where waves traveling parallel to the margin propagate 2%–4% faster than waves traveling perpendicular, opposite of what is expected for oceanic lithosphere. This provides evidence for margin‐parallel deformation in the mantle during breakup ∼170–200 Ma. We propose that relative motion of the overriding plate drives mantle deformation in ultra‐slow seafloor spreading environments.



      A 15–20 km thick low‐velocity lid extends ∼200 km from the margin and is interpreted as stretched continental mantle lithosphere

      Complete continental breakup and onset of normal seafloor spreading occurred ∼170 Ma, ∼25 Ma later than previously thought

      Observed margin‐parallel lithospheric anisotropy resulted from plate‐motion induced shear during ultra‐slow spreading 170–200 Ma


      A 15–20 km thick low‐velocity lid extends ∼200 km from the margin and is interpreted as stretched continental mantle lithosphere
      Complete continental breakup and onset of normal seafloor spreading occurred ∼170 Ma, ∼25 Ma later than previously thought
      Observed margin‐parallel lithospheric anisotropy resulted from plate‐motion induced shear during ultra‐slow spreading 170–200 Ma

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼