Electrodes are ideal substrates for surface localized self‐assembly processes. Spatiotemporal control over such processes is generally directed through the release of ions generated by redox reactions occurring specifically at the electrode. The so...
Electrodes are ideal substrates for surface localized self‐assembly processes. Spatiotemporal control over such processes is generally directed through the release of ions generated by redox reactions occurring specifically at the electrode. The so‐used gradients of ions proved their effectiveness over the last decade but are in essence limited to material‐based electrodes, considerably reducing the scope of applications. Herein is described a strategy to enzymatically generate proton gradients from non‐conductive surfaces. In the presence of oxygen, immobilization of glucose oxidase (GOx) on a multilayer film provides a flow of protons through enzymatic oxidation of glucose by GOx. The confined acidic environment located at the solid–liquid interface allows the self‐assembly of Fmoc‐AA‐OH (Fmoc=fluorenylmethyloxycarbonyl and A=alanine) dipeptides into β‐sheet nanofibers exclusively from and near the surface. In the absence of oxygen, a multilayer nanoreactor containing GOx and horseradish peroxidase (HRP) similarly induces Fmoc‐AA‐OH self‐assembly.
Die Kraft der Enzyme: In einem mehrschichtigen Film mit Protonengradient und einem Reaktionssystem aus zwei Enzymen wird lokalisiert ein supramolekulares Hydrogel gebildet. Dieser Ansatz bildet eine Alternative zur pH‐responsiven Selbstorganisation an Elektrodenoberflächen.