<P>In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. H...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107603545
2012
-
SCI,SCIE,SCOPUS
학술저널
67
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. H...
<P>In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. High-resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly suggest the development of helical kink instability in the erupting prominence, which implies a flux rope structure of the magnetic field. A brightening starts below the apex of the prominence with its slow rising motion (similar to 100 km s (1)) during the activation phase. A bright structure, indicative of a helix with similar to 3-4 turns, was transiently formed at this position. The corresponding twist of similar to 6 pi-8 pi is sufficient to generate the helical kink instability in a flux rope according to recently developed models. A slowly rising blob structure was subsequently formed at the apex of the prominence, and a flaring loop was observed near the footpoints. Within 2 minutes, a second blob was formed in the northern prominence leg. The second blob erupts (like a plasmoid ejection) with the detachment of the northern prominence leg, and flare intensity maximizes. The first blob at the prominence apex shows rotational motion in the counterclockwise direction in the plane of sky, interpreted as the unwinding motion of a helix, and it also erupts to give the CME. RHESSI hard X-ray (HXR) sources show the two footpoint sources and a loop-top source during the flare. We found RHESSI HXR flux, soft X-ray flux derivative, and CME acceleration in the low corona correlate well, which is in agreement with the standard flare model (CSHKP). We also discuss the possible role of ballooning as well as torus instabilities in driving the CME. We conclude that the CME and flare were triggered by the helical kink instability in a flux rope and accelerated mainly by the torus instability.</P>