RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Wide Bandgap Perovskite Oxides with High Room‐Temperature Electron Mobility

      한글로보기

      https://www.riss.kr/link?id=O113284808

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2019년

      • 작성언어

        -

      • Online ISSN

        2196-7350

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Perovskite oxides are ABO3‐type compounds with a crystal structure capable of accommodating a large number of elements at A‐ and B‐sites. Owing to their flexible structure and complex chemistry, they exhibit a wide range of functionalities as well as novel ground states at the interface. However, in comparison with conventional semiconductors such as silicon, they possess orders of magnitude lower room‐temperature electron mobilities limiting their room‐temperature electronic applications. For example, in a prototypical doped SrTiO3, the room‐temperature electron mobility remains below 10 cm2 V−1 s−1 regardless of the defect minimization. Discovery of high room‐temperature mobility in alkaline‐earth stannates such as BaSnO3 and SrSnO3 constitutes a significant advancement toward all‐perovskite electronic and spintronic devices. Alkaline‐earth stannates also possess wide‐to‐ultra wide bandgaps that make them potentially suitable candidate for transparent conductors, power electronic devices, and high electron mobility transistors. This article provides an overview of the recent progress made to these materials' electrical properties with particular emphasis on the advancements in the molecular beam epitaxy approaches for their synthesis, and defect control.
      This article provides an overview of the recent progress made to the alkaline‐earth stannates as a high room‐temperature mobility perovskite oxide semiconductor with particular emphasis on the advancements in the molecular beam epitaxy approaches for the study of their synthesis‐structure‐defect‐property relationships.
      번역하기

      Perovskite oxides are ABO3‐type compounds with a crystal structure capable of accommodating a large number of elements at A‐ and B‐sites. Owing to their flexible structure and complex chemistry, they exhibit a wide range of functionalities as we...

      Perovskite oxides are ABO3‐type compounds with a crystal structure capable of accommodating a large number of elements at A‐ and B‐sites. Owing to their flexible structure and complex chemistry, they exhibit a wide range of functionalities as well as novel ground states at the interface. However, in comparison with conventional semiconductors such as silicon, they possess orders of magnitude lower room‐temperature electron mobilities limiting their room‐temperature electronic applications. For example, in a prototypical doped SrTiO3, the room‐temperature electron mobility remains below 10 cm2 V−1 s−1 regardless of the defect minimization. Discovery of high room‐temperature mobility in alkaline‐earth stannates such as BaSnO3 and SrSnO3 constitutes a significant advancement toward all‐perovskite electronic and spintronic devices. Alkaline‐earth stannates also possess wide‐to‐ultra wide bandgaps that make them potentially suitable candidate for transparent conductors, power electronic devices, and high electron mobility transistors. This article provides an overview of the recent progress made to these materials' electrical properties with particular emphasis on the advancements in the molecular beam epitaxy approaches for their synthesis, and defect control.
      This article provides an overview of the recent progress made to the alkaline‐earth stannates as a high room‐temperature mobility perovskite oxide semiconductor with particular emphasis on the advancements in the molecular beam epitaxy approaches for the study of their synthesis‐structure‐defect‐property relationships.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼