RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Layer‐by‐Layer Assembly of Functional Nanoparticles for Hepatocellular Carcinoma Therapy

      한글로보기

      https://www.riss.kr/link?id=O113278585

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2019년

      • 작성언어

        -

      • Print ISSN

        1616-301X

      • Online ISSN

        1616-3028

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cancer treatments with conventional approaches often result in limited clinical outcomes due to inefficient therapeutic efficacy and cumulative toxicity against normal tissue. Recently, most research has focused on combined therapeutic studies by functional carriers. In this study, functional nanoparticles (FNPs) are assembled in a layer‐by‐layer fashion. FNPs are loaded with two drugs (10‐hydroxycamptothecin and apoptin plasmid) with dual hepatocellular carcinoma‐targeting ligands (lactobionic acid and biotin) on the surface. Cytotoxicity studies and acute toxicity experiments in BAL b/c mice show that blank FNPs demonstrate good biocompatibility. Flow cytometry analysis and cytotoxicity studies demonstrate that the dual‐targeting FNPs allow for better specificity and selectivity of the tumor mass. FNPs can escape from endosomal/lysosomal compartments effectively, as is demonstrated using the Cell Navigator lysosome staining kit. When the drugs are released into the cytosol, the nuclear localization signal can enhance the nuclear delivery of 10‐hydroxycamptothecin loaded carriers and apoptin plasmids, as is demonstrated by confocal laser scanning microscopy. In vivo experiments show the circulation time and tissue distribution of FNPs, which greatly improve the therapeutic efficacy of BAL b/c nude mice with subcutaneous tumors. Taken together, the results suggest that FNPs are a promising candidate for hepatocellular carcinoma therapy.
      A novel functional nanoparticle (FNP) is designed using the layer‐by‐layer coating method In this framework. The FNPs are able to target Hep G2 cells, escape from the endosome/lysosome to the cytosol, and target to the nucleus. FNPs have promising potential for coincorporating dual or multiple agent delivery with high efficiency.
      번역하기

      Cancer treatments with conventional approaches often result in limited clinical outcomes due to inefficient therapeutic efficacy and cumulative toxicity against normal tissue. Recently, most research has focused on combined therapeutic studies by func...

      Cancer treatments with conventional approaches often result in limited clinical outcomes due to inefficient therapeutic efficacy and cumulative toxicity against normal tissue. Recently, most research has focused on combined therapeutic studies by functional carriers. In this study, functional nanoparticles (FNPs) are assembled in a layer‐by‐layer fashion. FNPs are loaded with two drugs (10‐hydroxycamptothecin and apoptin plasmid) with dual hepatocellular carcinoma‐targeting ligands (lactobionic acid and biotin) on the surface. Cytotoxicity studies and acute toxicity experiments in BAL b/c mice show that blank FNPs demonstrate good biocompatibility. Flow cytometry analysis and cytotoxicity studies demonstrate that the dual‐targeting FNPs allow for better specificity and selectivity of the tumor mass. FNPs can escape from endosomal/lysosomal compartments effectively, as is demonstrated using the Cell Navigator lysosome staining kit. When the drugs are released into the cytosol, the nuclear localization signal can enhance the nuclear delivery of 10‐hydroxycamptothecin loaded carriers and apoptin plasmids, as is demonstrated by confocal laser scanning microscopy. In vivo experiments show the circulation time and tissue distribution of FNPs, which greatly improve the therapeutic efficacy of BAL b/c nude mice with subcutaneous tumors. Taken together, the results suggest that FNPs are a promising candidate for hepatocellular carcinoma therapy.
      A novel functional nanoparticle (FNP) is designed using the layer‐by‐layer coating method In this framework. The FNPs are able to target Hep G2 cells, escape from the endosome/lysosome to the cytosol, and target to the nucleus. FNPs have promising potential for coincorporating dual or multiple agent delivery with high efficiency.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼