RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      무선센서네트워크에 적합한 진동센서 De-noising 방법에 관한 연구

      한글로보기

      https://www.riss.kr/link?id=A82679059

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Acoustic signal power of footsteps is relatively small than external noise and easy to stash, while the seismic signal of the footsteps is large and hard to eliminate. Thus, seismic sensor is suitable to detect human footsteps for Wireless Sensor Network. In order to increase the detection range of seismic sensor, Wavelet De-noising Method has widely used. For applying Wavelet De-noising method to real-time Embedded system, it is needed to optimize the decomposition level of Filter-Bank and minimize sampling frequency. In this paper, the optimum Wavelet decomposition level and De-noising method are presented. In addition, the proposed method is verified with fixed-point model.
      번역하기

      Acoustic signal power of footsteps is relatively small than external noise and easy to stash, while the seismic signal of the footsteps is large and hard to eliminate. Thus, seismic sensor is suitable to detect human footsteps for Wireless Sensor Netw...

      Acoustic signal power of footsteps is relatively small than external noise and easy to stash, while the seismic signal of the footsteps is large and hard to eliminate. Thus, seismic sensor is suitable to detect human footsteps for Wireless Sensor Network. In order to increase the detection range of seismic sensor, Wavelet De-noising Method has widely used. For applying Wavelet De-noising method to real-time Embedded system, it is needed to optimize the decomposition level of Filter-Bank and minimize sampling frequency. In this paper, the optimum Wavelet decomposition level and De-noising method are presented. In addition, the proposed method is verified with fixed-point model.

      더보기

      참고문헌 (Reference)

      1 M. Kania, "Wavelet Denoising for Multi-lead High Resolution ECG Signals" 7 (7): 30-33, 2007

      2 Huai-Fei Xing, "Wavelet Denoising and Feature Extraction of Seismic Signal For Footstep Detection" 218-223, 2007

      3 Romer K, "The design space of wireless sensor networks" 54-61, 2004

      4 Ali N. Akansu, "The Binomial QMF-Wavelet Transform for Multiresolution Signal Decomposition" 41 (41): 13-19, 1993

      5 Alex Pakhomov, "Seismic Signal and Noise Assessment for Foot Step Detection Range Estimation in Different Environments" 5417 : 87-98, 2004

      6 Iyengar, S.G., "On the Detection of Footsteps Based on Acoustic and Seismic Sensing" 2248-2252, 2007

      7 Mallat, "A theory for multiresolution signal decomposition: the wavelet representation" 11 (11): 674-693, 1989

      8 Giorgos P., "A Prototype Sensor Node for Footstep Detection" 415-418, 2005

      1 M. Kania, "Wavelet Denoising for Multi-lead High Resolution ECG Signals" 7 (7): 30-33, 2007

      2 Huai-Fei Xing, "Wavelet Denoising and Feature Extraction of Seismic Signal For Footstep Detection" 218-223, 2007

      3 Romer K, "The design space of wireless sensor networks" 54-61, 2004

      4 Ali N. Akansu, "The Binomial QMF-Wavelet Transform for Multiresolution Signal Decomposition" 41 (41): 13-19, 1993

      5 Alex Pakhomov, "Seismic Signal and Noise Assessment for Foot Step Detection Range Estimation in Different Environments" 5417 : 87-98, 2004

      6 Iyengar, S.G., "On the Detection of Footsteps Based on Acoustic and Seismic Sensing" 2248-2252, 2007

      7 Mallat, "A theory for multiresolution signal decomposition: the wavelet representation" 11 (11): 674-693, 1989

      8 Giorgos P., "A Prototype Sensor Node for Footstep Detection" 415-418, 2005

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.35 0.566 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼