RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Martian Eolian Dust Probed by ChemCam

      한글로보기

      https://www.riss.kr/link?id=O120841702

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent.
      Eolian dust on Mars is very fine dust that covers the entire surface of the planet, gives it its typical red hue, and is mobilized by wind. It plays a significant role in the current rock cycle of the planet and for the temperature of the atmosphere. ChemCam uses a series of pulsed laser shots to analyze the chemical composition of target materials. Each first laser shot by ChemCam gives the composition of the deposited dust. These measurements have been constant over the duration of the Mars Science Laboratory mission. The dust is homogeneous at the millimeter scale (approximately the size of the ChemCam analysis spot). Compared to local soils and sands at Gale crater, the dust contains higher levels of iron and titanium, associated with volatile elements like hydrogen, sulfur, and chlorine. We infer from this difference that the dust does not entirely originate locally and may be part of a separate global cycle.


      The martian eolian dust chemical composition is homogeneous at the submillimeter scale
      The dust composition is different from the Aeolis Palus soils and Bagnold sands with a larger content of FeO and TiO2 and lower hydration
      Although dust may be a contributor to the amorphous component of soils, its composition indicates that the two materials are not equivalent
      번역하기

      The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot o...

      The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2 contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent.
      Eolian dust on Mars is very fine dust that covers the entire surface of the planet, gives it its typical red hue, and is mobilized by wind. It plays a significant role in the current rock cycle of the planet and for the temperature of the atmosphere. ChemCam uses a series of pulsed laser shots to analyze the chemical composition of target materials. Each first laser shot by ChemCam gives the composition of the deposited dust. These measurements have been constant over the duration of the Mars Science Laboratory mission. The dust is homogeneous at the millimeter scale (approximately the size of the ChemCam analysis spot). Compared to local soils and sands at Gale crater, the dust contains higher levels of iron and titanium, associated with volatile elements like hydrogen, sulfur, and chlorine. We infer from this difference that the dust does not entirely originate locally and may be part of a separate global cycle.


      The martian eolian dust chemical composition is homogeneous at the submillimeter scale
      The dust composition is different from the Aeolis Palus soils and Bagnold sands with a larger content of FeO and TiO2 and lower hydration
      Although dust may be a contributor to the amorphous component of soils, its composition indicates that the two materials are not equivalent

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼