A transformation of fluxional into configurationally stable axially chiral N‐arylpyrroles was achieved with a highly atroposelective electrophilic aromatic substitution catalyzed by a chiral‐at‐metal rhodium Lewis acid. Specifically, N‐arylpyr...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O112388515
2020년
-
1433-7851
1521-3773
SCI;SCIE;SCOPUS
학술저널
13552-13556 [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
A transformation of fluxional into configurationally stable axially chiral N‐arylpyrroles was achieved with a highly atroposelective electrophilic aromatic substitution catalyzed by a chiral‐at‐metal rhodium Lewis acid. Specifically, N‐arylpyr...
A transformation of fluxional into configurationally stable axially chiral N‐arylpyrroles was achieved with a highly atroposelective electrophilic aromatic substitution catalyzed by a chiral‐at‐metal rhodium Lewis acid. Specifically, N‐arylpyrroles were alkylated with N‐acryloyl‐1H‐pyrazole electrophiles in up to 93 % yield and with up to >99.5 % ee, and follow‐up conversions reveal the synthetic utility of this new method. DFT calculations elucidate the origins of the observed excellent atroposelectivity.
Freeze, don't move: A transformation of fluxional into configurationally stable axially chiral N‐arylpyrroles was achieved through a highly atroposelective electrophilic aromatic substitution catalyzed by a chiral‐at‐metal rhodium Lewis acid, with follow‐up transformations leading to structurally diverse axially chiral N‐arylpyrroles.