RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      SRCNN과 VDSR의 구조와 방법 및 개선된 성능평가 함수 = Structure, Method, and Improved Performance Evaluation Function of SRCNN and VDSR

      한글로보기

      https://www.riss.kr/link?id=A107380387

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, th...

      The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.

      더보기

      국문 초록 (Abstract)

      이미지는 해상도가 높을수록 이미지를 시청하는 사람들의 만족도가 높아지며 초고해상도 이미지화는 컴퓨터 비전이나 영상처리 분야 중에서도 연구 가치가 꽤 높아지고 있다. 본 연구에서...

      이미지는 해상도가 높을수록 이미지를 시청하는 사람들의 만족도가 높아지며 초고해상도 이미지화는 컴퓨터 비전이나 영상처리 분야 중에서도 연구 가치가 꽤 높아지고 있다. 본 연구에서는 주로 딥 러닝 초 해상도 모델을 사용하여 저해상도 이미지 LR의 주요 특징을 추출한다. 추출된 특징을 학습 및 재구성하고, 고해상도 이미지 HR을 생성하는 재구성 기반 알고리즘에 중점을 둔다. 본 논문에서는 재구성에 기반을 둔 초 해상도 알고리즘 모델에서 SRCNN과 VDSR에 대하여 알아보도록 한다. SRCNN과 VDSR모델의 구조 및 알고리즘 프로세스를 간략하게 소개하고 개선된 성능평가 함수에서도 다중 채널과 특수한 형태에 대하여 알아보도록 하며, 실험을 통하여 각 알고리즘의 성능을 이해하도록 한다. 실험에서는 SRCNN 및 VDSR 모델의 결과와 피크 신호 대 잡음 비 및 이미지 구조 유사도를 비교하는 실험을 수행하여 결과를 한눈에 볼 수 있도록 하였다.

      더보기

      참고문헌 (Reference)

      1 Y. Zhang, "Residual dense network for image super-resolution" 2472-2481, 2018

      2 C. Dong, "Learning a deep convolutional network for image super-resolution" Springer 184-199, 2014

      3 Y. Zhang, "Image super-resolution using very deep residual channel attention networks" 286-301, 2018

      4 Z. Wang, "Image quality assessment : From error visibility to structural similarity" 13 (13): 600-612, 2004

      5 N. Ahn, "Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network" 256-272, 2018

      6 D. Vint, "Evaluation of performance of VDSR super resolution on real and synthetic images" 1-5, 2019

      7 Y. L. Seo, "Current status and latest trend of deep learning-based super resolution technology" 25 (25): 7-16, 2020

      8 J. Kim, "Accurate image super-resolution using very deep convolutional networks" 1646-1654, 2016

      1 Y. Zhang, "Residual dense network for image super-resolution" 2472-2481, 2018

      2 C. Dong, "Learning a deep convolutional network for image super-resolution" Springer 184-199, 2014

      3 Y. Zhang, "Image super-resolution using very deep residual channel attention networks" 286-301, 2018

      4 Z. Wang, "Image quality assessment : From error visibility to structural similarity" 13 (13): 600-612, 2004

      5 N. Ahn, "Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network" 256-272, 2018

      6 D. Vint, "Evaluation of performance of VDSR super resolution on real and synthetic images" 1-5, 2019

      7 Y. L. Seo, "Current status and latest trend of deep learning-based super resolution technology" 25 (25): 7-16, 2020

      8 J. Kim, "Accurate image super-resolution using very deep convolutional networks" 1646-1654, 2016

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-11-23 학술지명변경 외국어명 : THE JOURNAL OF The KOREAN Institute Of Maritime information & Communication Science -> Journal of the Korea Institute Of Information and Communication Engineering KCI등재
      2011-11-16 학회명변경 영문명 : International Journal of Information and Communication Engineering(IJICE) -> The Korea Institute of Information and Communication Engineering KCI등재
      2011-11-14 학회명변경 한글명 : 한국해양정보통신학회 -> 한국정보통신학회
      영문명 : 미등록 -> International Journal of Information and Communication Engineering(IJICE)
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.27
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.22 0.424 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼