RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Free vibration analysis of non-prismatic beams under variable axial forces

      한글로보기

      https://www.riss.kr/link?id=A104816537

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing enginee...

      Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing engineers around the world. Development of such analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In this paper a new and simple method is proposed for determination of vibration frequencies of nonprismatic beams under variable axial forces. The governing differential equation is first obtained and,according to a harmonic vibration, is converted into a single variable equation in terms of location. Through repetitive integrations, integral equation for the weak form of governing equation is derived. The integration constants are determined using the boundary conditions applied to the problem. The mode shape functions are approximated by a power series. Substitution of the power series into the integral equation transforms it into a system of linear algebraic equations. Natural frequencies are determined using a non-trivial solution for system of equations. Presented method is formulated for beams having various end conditions and is extended for determination of the buckling load of non-prismatic beams. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained to those obtained using available finite element software.

      더보기

      참고문헌 (Reference)

      1 Arboleda-Monsalve, L. G., "Stability and natural frequencies of a weakened Timoshenko beam-column with generalized end conditions under constant axial load" 307 (307): 89-112, 2007

      2 Yavari, A., "On non-uniform Euler-Bernoulli and Timoshenko beams with jump discontinuities : application of distribution theory" 38 (38): 8389-8406, 2001

      3 Elfelsoufi, Z., "Integral equation formulation and analysis of the dynamic stability of damped beams subjected to subtangential follower forces" 296 (296): 690-713, 2006

      4 Antes, H., "Fundamental solution and integral equations for Timoshenko beams" 81 (81): 383-396, 2003

      5 Li, Q. S., "Free vibration analysis of cantilevered tall structures under various axial loads" 22 (22): 525-534, 2000

      6 Li, Q. S., "Exact solutions for buckling of non-uniform columns under axial concentrated and distributed loading" 20 (20): 485-500, 2001

      7 Clough, R.W., "Dynamics of Structures" McGraw-Hill Book Company 1975

      8 Caruntu, D. I., "Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness" 36 (36): 391-404, 2009

      9 Elfelsoufi, Z., "Buckling flutter and vibration analyses of beams by integral equation formulations" 83 (83): 2632-2649, 2005

      10 Rahai, A.R., "Buckling analysis of non-prismatic columns based on modified vibration modes" 13 (13): 1721-1735, 2008

      1 Arboleda-Monsalve, L. G., "Stability and natural frequencies of a weakened Timoshenko beam-column with generalized end conditions under constant axial load" 307 (307): 89-112, 2007

      2 Yavari, A., "On non-uniform Euler-Bernoulli and Timoshenko beams with jump discontinuities : application of distribution theory" 38 (38): 8389-8406, 2001

      3 Elfelsoufi, Z., "Integral equation formulation and analysis of the dynamic stability of damped beams subjected to subtangential follower forces" 296 (296): 690-713, 2006

      4 Antes, H., "Fundamental solution and integral equations for Timoshenko beams" 81 (81): 383-396, 2003

      5 Li, Q. S., "Free vibration analysis of cantilevered tall structures under various axial loads" 22 (22): 525-534, 2000

      6 Li, Q. S., "Exact solutions for buckling of non-uniform columns under axial concentrated and distributed loading" 20 (20): 485-500, 2001

      7 Clough, R.W., "Dynamics of Structures" McGraw-Hill Book Company 1975

      8 Caruntu, D. I., "Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness" 36 (36): 391-404, 2009

      9 Elfelsoufi, Z., "Buckling flutter and vibration analyses of beams by integral equation formulations" 83 (83): 2632-2649, 2005

      10 Rahai, A.R., "Buckling analysis of non-prismatic columns based on modified vibration modes" 13 (13): 1721-1735, 2008

      11 S. Bahadir Yuksel, "Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5" 국제구조공학회 42 (42): 849-866, 2012

      12 Kaviani, P., "Approximate analysis of tall buildings using sandwich beam models with variable cross section" 17 (17): 401-418, 2008

      13 Shooshtari, A., "An efficient procedure to find shape functions and stiffness matrices of non-prismatic Euler-Bernoulli and Timoshenko beam elements" 29 (29): 826-836, 2010

      14 Li, X. F., "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams" 318 (318): 1210-1229, 2008

      15 Huang, Y., "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section" 329 (329): 2291-2303, 2010

      16 Danguang Pan, "A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams" 국제구조공학회 40 (40): 689-703, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-12-01 평가 등재후보 탈락 (해외등재 학술지 평가)
      2020-12-01 평가 등재후보로 하락 (해외등재 학술지 평가) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-04-09 학회명변경 한글명 : (사)국제구조공학회 -> 국제구조공학회 KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-06-16 학회명변경 영문명 : Ternational Association Of Structural Engineering And Mechanics -> International Association of Structural Engineering And Mechanics KCI등재
      2005-05-26 학술지명변경 한글명 : 국제구조계산역학지 -> Structural Engineering and Mechanics, An Int'l Journal KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.12 0.62 0.94
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.79 0.68 0.453 0.33
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼