RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Attribution of Cortical Granules to Formation of Fertilization Envelopes and Polyspermy Block in Urechis unicinctus

      한글로보기

      https://www.riss.kr/link?id=A100745422

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cortical reaction and polyspermy block are well defined in most marine invertebrates. In Urechis species, the function of cortical granules (CGs) is not yet known, and there is controversy on whether the cortical reaction occurs, or the fertilization envelope (FE) is attributed to CG releases or functions to prevent polyspermy. This study was carried out to determine the cortical reactions and functions of the FE in Urechis unicinctus. Artificial insemination of the eggs revealed that CG release occurred to give rise to perivitelline space (PS) into the final FE. Both PS and final FE effectively blocked polyspermy. The final FE was accomplished within 10 min after sperm-egg initial binding. No massive release of CGs occurred within the early phase of 5 min after the initial binding, initially and the PS seemed to playa role to prevent polyspermy. The CG massively released its content into the PS in late phase of FE formation, and differentiated PS into five intermediate layers. The layers opened into each other by anastomosis, so that the final FE consisted of two layers, the inner layer ($15{\mu}m$ in thickness) and the outer layer ($1{\mu}m$ in thickness). The outer layer derived from vitelline layer and the inner layer consisted of PS and CG secretions. Immunofluorescence and confocal laser microscopy revealed that the spermatozoon took up residence in the egg cortex during FE formation and successive meioses of the fertilized egg. These results suggest that both PS and final FE of U. unicinctus were equivalent to the early and late block, respectively, of other marine animals.
      번역하기

      Cortical reaction and polyspermy block are well defined in most marine invertebrates. In Urechis species, the function of cortical granules (CGs) is not yet known, and there is controversy on whether the cortical reaction occurs, or the fertilization ...

      Cortical reaction and polyspermy block are well defined in most marine invertebrates. In Urechis species, the function of cortical granules (CGs) is not yet known, and there is controversy on whether the cortical reaction occurs, or the fertilization envelope (FE) is attributed to CG releases or functions to prevent polyspermy. This study was carried out to determine the cortical reactions and functions of the FE in Urechis unicinctus. Artificial insemination of the eggs revealed that CG release occurred to give rise to perivitelline space (PS) into the final FE. Both PS and final FE effectively blocked polyspermy. The final FE was accomplished within 10 min after sperm-egg initial binding. No massive release of CGs occurred within the early phase of 5 min after the initial binding, initially and the PS seemed to playa role to prevent polyspermy. The CG massively released its content into the PS in late phase of FE formation, and differentiated PS into five intermediate layers. The layers opened into each other by anastomosis, so that the final FE consisted of two layers, the inner layer ($15{\mu}m$ in thickness) and the outer layer ($1{\mu}m$ in thickness). The outer layer derived from vitelline layer and the inner layer consisted of PS and CG secretions. Immunofluorescence and confocal laser microscopy revealed that the spermatozoon took up residence in the egg cortex during FE formation and successive meioses of the fertilized egg. These results suggest that both PS and final FE of U. unicinctus were equivalent to the early and late block, respectively, of other marine animals.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼