RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

      한글로보기

      https://www.riss.kr/link?id=A104536421

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However,this type of prediction based on various assumptions can occasionally produce outcomes which are farfrom actual experience. Thus, every adaptive opt...

      An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However,this type of prediction based on various assumptions can occasionally produce outcomes which are farfrom actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop onan optical test bench before its application to a telescope. In the close-loop test bench, we need anatmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial andtemporal behavior. We report the development of an atmospheric turbulence simulator consisting of twopoint sources, a commercially available deformable mirror with a 12×12 actuator array, and two randomphase plates. The simulator generates an atmospherically distorted single or binary star with varying stellarmagnitudes and angular separations. We conduct a simulation of a binary star by optically combining twopoint sources mounted on independent precision stages. The light intensity of each source (an LED witha pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is preciselyadjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance,i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmosphericmodel and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirroris then continuously best-fitted to the time-sequenced phase screens based on the least square method.
      Similarly, we also implement another simulation by rotating two random phase plates which were manufacturedto have atmospheric-disturbance-like residual aberrations. This later method is limited in its abilityto simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods,individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatoryin South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameterat a telescope pupil plane of 500 nm.

      더보기

      참고문헌 (Reference)

      1 안교훈, "적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상" 한국광학회 27 (27): 106-113, 2016

      2 V. I. Tatarskii, "Wave propagation in a turbulent medium" McGraw-Hall 1961

      3 R. G. Lane, "Simulation of a Kolmogorov phase screen" 2 : 209-224, 1992

      4 M. K. Giles, "Setting up a liquid crystal phase screen to simulate atmospheric turbulence" 4124 : 89-97, 2000

      5 R. W. Wilson, "SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor" 337 : 103-108, 2002

      6 J. H. Lee, "Robotic SLODAR development for seeing evaluations at the Bohyunsan Observatory" 2015

      7 M. A. van Dam, "Performance of the keck observatory adaptive-optics system" 43 : 5458-5467, 2004

      8 B. W. Frazier, "Performance of a compact adaptive-optics system" 43 : 4281-4287, 2004

      9 D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures" 56 : 1372-1379, 1966

      10 T. S. Taylor, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion" 34 : 665-669, 2002

      1 안교훈, "적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상" 한국광학회 27 (27): 106-113, 2016

      2 V. I. Tatarskii, "Wave propagation in a turbulent medium" McGraw-Hall 1961

      3 R. G. Lane, "Simulation of a Kolmogorov phase screen" 2 : 209-224, 1992

      4 M. K. Giles, "Setting up a liquid crystal phase screen to simulate atmospheric turbulence" 4124 : 89-97, 2000

      5 R. W. Wilson, "SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor" 337 : 103-108, 2002

      6 J. H. Lee, "Robotic SLODAR development for seeing evaluations at the Bohyunsan Observatory" 2015

      7 M. A. van Dam, "Performance of the keck observatory adaptive-optics system" 43 : 5458-5467, 2004

      8 B. W. Frazier, "Performance of a compact adaptive-optics system" 43 : 4281-4287, 2004

      9 D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures" 56 : 1372-1379, 1966

      10 T. S. Taylor, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion" 34 : 665-669, 2002

      11 B. L. Ellerbroek, "First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes" 11 : 783-805, 1994

      12 C. M. Harding, "Fast simulation of a Kolmogorov phase screen" 38 : 2161-2170, 1999

      13 T. Butterley, "Determination of the profile of atmospheric optical turbulence strength from SLODAR data" 369 : 835-845, 2006

      14 "Boston Micromachines Corporation - Deformable Mirrors"

      15 M. Puga, "An atmospheric turbulence and telescope simulator for the development of AOLI" Ground-based and Airborne Instrumentation for Astronomy V 91477V-, 2014

      16 E. J. Fernández, "Adaptive optics with a magnetic deformable mirror: applications in the human eye" 14 : 8900-8917, 2006

      17 R. K. Tyson, "Adaptive optics system performance approximations for atmospheric turbulence correction" 29 : 1165-1173, 1990

      18 J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications" 31 : 13-62, 1993

      19 S. Thomas, "A simple turbulence simulator for adaptive optics" 5490 : 766-773, 2004

      20 L. Hu, "A liquid crystal atmospheric turbulence simulator" 14 : 11911-11918, 2006

      21 이준호, "A 37Ch Visible Adaptive Optics System for Wavefront Compensation" 한국물리학회 49 (49): 139-144, 2006

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-02-03 학술지명변경 한글명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      외국어명 : Journal of the Optical Society of Korea -> Current Optics and Photonics
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-02 학술지명변경 한글명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      외국어명 : Journal of Optical Society of Korea -> Journal of the Optical Society of Korea
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.67 0.24 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.43 0.383 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼