RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      구글 코랩의 파이썬을 이용한 탐색적 요인분석: SPSS와의 비교를 중심으로 = Exploratory Factor Analysis using R Program: Focused on a Comparison with SPSS

      한글로보기

      https://www.riss.kr/link?id=A108847202

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This research delves into the application of exploratory factor analysis (EFA) using Python in Google Colab and contrasts the results with those obtained using SPSS.
      With an emphasis on showcasing the efficacy and accessibility of Google Colab's Python environment, this study aims to elucidate any differences or similarities in the outcomes derived from both tools. Upon conducting EFA, both Python and SPSS manifested closely aligned results. However, when applying parallel analysis for determining the appropriate number of factors, the Python environment in Google Colab showcased an advantage, while this function was not feasible in SPSS.
      Consequently, our findings accentuate Python's superiority, particularly within Google Colab, for executing EFA. The availability of parallel analysis, often lauded for its empirical precision in factor determination, adds to Python's appeal.
      번역하기

      This research delves into the application of exploratory factor analysis (EFA) using Python in Google Colab and contrasts the results with those obtained using SPSS. With an emphasis on showcasing the efficacy and accessibility of Google Colab's Pytho...

      This research delves into the application of exploratory factor analysis (EFA) using Python in Google Colab and contrasts the results with those obtained using SPSS.
      With an emphasis on showcasing the efficacy and accessibility of Google Colab's Python environment, this study aims to elucidate any differences or similarities in the outcomes derived from both tools. Upon conducting EFA, both Python and SPSS manifested closely aligned results. However, when applying parallel analysis for determining the appropriate number of factors, the Python environment in Google Colab showcased an advantage, while this function was not feasible in SPSS.
      Consequently, our findings accentuate Python's superiority, particularly within Google Colab, for executing EFA. The availability of parallel analysis, often lauded for its empirical precision in factor determination, adds to Python's appeal.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼