1 조원호 ; 임용호 ; 박기호, "합성곱 신경망을 이용한 딥러닝 기반의 토지피복 분류: 한국 토지피복을 대상으로" 대한지리학회 54 (54): 1-16, 2019
2 "토지 피복지도 항공위성 이미지(수도권)"
3 네이버시스템, "토지 피복지도 항공위성 이미지(강원 및 충청)"
4 박정재 ; 구자용 ; 김병선, "위성영상을 이용한 중분류 토지피복도의 제작과정 개선" 대한공간정보학회 15 (15): 67-80, 2007
5 "위성영상 객체판독" 한국항공우주연구원
6 김은정, "세계 지구관측 위성 시장 현황 및 전망" 16 (16): 22-28, 2018
7 오치영 ; 박소영 ; 김형석 ; 이양원 ; 최철웅, "고해상도 위성영상의 토지피복분류와 정확도 비교 연구" 한국지리정보학회 13 (13): 89-100, 2010
8 Gupta, R., "xBD: A Dataset for Assessing Building Damage from Satellite Imagery"
9 "resisc45"
10 Do, J., "Urbanization effect of mega sporting events using sentinel-2 satellite images : The case of the pyeongchang olympics" 74 : 103-158, 2021
1 조원호 ; 임용호 ; 박기호, "합성곱 신경망을 이용한 딥러닝 기반의 토지피복 분류: 한국 토지피복을 대상으로" 대한지리학회 54 (54): 1-16, 2019
2 "토지 피복지도 항공위성 이미지(수도권)"
3 네이버시스템, "토지 피복지도 항공위성 이미지(강원 및 충청)"
4 박정재 ; 구자용 ; 김병선, "위성영상을 이용한 중분류 토지피복도의 제작과정 개선" 대한공간정보학회 15 (15): 67-80, 2007
5 "위성영상 객체판독" 한국항공우주연구원
6 김은정, "세계 지구관측 위성 시장 현황 및 전망" 16 (16): 22-28, 2018
7 오치영 ; 박소영 ; 김형석 ; 이양원 ; 최철웅, "고해상도 위성영상의 토지피복분류와 정확도 비교 연구" 한국지리정보학회 13 (13): 89-100, 2010
8 Gupta, R., "xBD: A Dataset for Assessing Building Damage from Satellite Imagery"
9 "resisc45"
10 Do, J., "Urbanization effect of mega sporting events using sentinel-2 satellite images : The case of the pyeongchang olympics" 74 : 103-158, 2021
11 Ronneberger, O., "U-net: Convolutional networks for biomedical image segmentation" Springer 2015
12 Hackworth, J., "The changing state of gentrification" 92 (92): 464-477, 2001
13 Pelletier, C., "Temporal convolutional neural network for the classification of satellite image time series" 11 (11): 523-, 2019
14 Zhu, X.X., "So2Sat LCZ42: A Benchmark DataSet for the Classification of Global Local Climate Zones [Software and Data Sets]" 8 (8): 76-89, 2020
15 Ulmas, P, "Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification"
16 Pettorelli, N., "Satellite remote sensing for applied ecologists : opportunities and challenges" 51 (51): 839-848, 2014
17 Bello, O.M., "Satellite remote sensing as a tool in disaster management and sustainable development : towards a synergistic approach" 120 : 365-373, 2014
18 Gunasheela, K.S., "Satellite image compression-detailed survey of the algorithms" 187-198, 2018
19 Abburu, S., "Satellite image classification methods and techniques : A review" 119 (119): 20-25, 2015
20 Voigt, S., "Satellite image analysis for disaster and crisis-management support" 45 (45): 1520-1528, 2007
21 "Remote Sensors" NASA
22 Shermeyer, J., "Rareplanes: Synthetic Data Takes Flight" 2021
23 Gislason, P.O., "Random forests for land cover classification" 27 (27): 294-300, 2006
24 Qiu, C., "Multilevel Feature Fusion-Based CNN for Local Climate Zone Classification From Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset" 13 : 2793-2806, 2020
25 Bischke, B., "Multi-task learning for segmentation of building footprints with deep neural networks" 2019
26 Chakraborty, D., "Geographic Information Systems in Geospatial Intelligence" IntechOpen 107-120, 2019
27 Ahmari, R., "Gentrification: Causation and Identification"
28 Bandyopadhyay, S., "Genetic clustering for automatic evolution of clusters and application to image classification" 35 (35): 1197-1208, 2002
29 Helber, P., "Eurosat: A novel dataset and Deep learning Benchmark for Land Use and Land Cover Classification" 12 (12): 2217-2226, 2017
30 Raza, A., "Diverse Capsules Network Combining Multiconvolutional Layers for Remote Sensing Image Scene Classification" 13 : 5297-5313, 2020
31 Verbesselt, J., "Detecting trend and seasonal changes in satellite image time series" 114 (114): 106-115, 2010
32 Jean, N., "Combining satellite imagery and machine learning to predict poverty" 353 (353): 790-794, 2016
33 Zheng, Y.-J., "Co-evolutionary Fuzzy Deep Transfer Learning for Disaster Relief Demand Forecasting" 2021
34 Sumbul, G., "Bigearthnet: A large-scale benchmark archive for remote sensing image understanding" 2019
35 Bandyopadhyay, S, "An evolutionary technique based on K-Means algorithm for optimal clustering in RN" 146 (146): 221-237, 2002
36 Abburu, S., "An Ontology Based Methodology for Satellite Data Semantic Interoperability" 15 (15): 105-110, 2015
37 Chiu, M.T., "Agriculture-vision: A large aerial image database for agricultural pattern analysis" 2020
38 Chiu, M.T., "Agriculture-Vision: A Large Aerial Image Database for Agricultural Pattern Analysis" 2825-2835, 2020
39 Heffels, M.R., "Aerial Imagery Pixel-level Segmentation"
40 Mahmon, N.A., "A review on classification of satellite image using Artificial Neural Network (ANN)" 2014
41 Sharma, R., "A review of soft classification approaches on satellite image and accuracy assessment" 629-639, 2016
42 Dhingra, S., "A review of remotely sensed satellite image classification" 9 (9): 2088-8708, 2019
43 M. Gheisari, "A Survey on Deep Learning in Big Data" 173-180, 2017
44 Guragai, B., "A Survey on Deep Learning Classification Algorithms for Motor Imagery" 1-4, 2020
45 Chengjuan Ren ; Dae-Kyoo Kim ; 정동원, "A Survey of Deep Learning in Agriculture: Techniques and Their Applications" 한국정보처리학회 16 (16): 1015-1033, 2020
46 김동원, ""시장분석부터 작물 생산량 예측까지"...인공위성과 인공지능이 만나면 가능해지는 일은?"