RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Dialogue Systems Specialized in Social Influence: Systems, Methods, and Ethics [electronic resource]

      한글로보기

      https://www.riss.kr/link?id=T16934019

      • 저자
      • 발행사항

        Ann Arbor : ProQuest Dissertations & Theses, 2023

      • 학위수여대학

        Columbia University Computer Science

      • 수여연도

        2023

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        1 online resource(174 p.)

      • 지도교수/심사위원

        Advisor: Yu, Zhou.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      This thesis concerns the task of how to develop dialogue systems specialized in social influence and problems around deploying such systems. Dialogue systems have become widely adopted in our daily life. Most dialogue systems are primarily focused on information-seeking tasks or social companionship. However, they cannot apply strategies in complex and critical social influence tasks, such as healthy habit promotion, emotional support, etc. In this work, we formally define social influence dialogue systems to be systems that influence users' behaviors, feelings, thoughts, or opinions through natural conversations. We also present methods to make such systems intelligible, privacy-preserving, and thus deployable in real life. Finally, we acknowledge potential ethical issues around social influence systems and propose solutions to mitigate them in Chapter 6.Social influence dialogues span various domains, such as persuasion, negotiation, and recommendation. We first propose a donation persuasion task, PERSUASIONFORGOOD, and ground our study on this persuasion task for social good. We then build a persuasive dialogue system, by refining the dialogue model for intelligibility and imitating human experts for persuasiveness, and a negotiation agent that can play the game of Diplomacy by decoupling the planning engine and the dialogue generation module to improve controllability of social influence systems. To deploy such a system in the wild, our work examines how humans perceive the AI agent's identity, and how their perceptions impact the social influence outcome. Moreover, dialogue models are trained on conversations, where people could share personal information. This creates privacy concerns for deployment as the models may memorize private information. To protect user privacy in the training data, our work develops privacy-preserving learning algorithms to ensure deployed models are safe under privacy attacks. Finally, deployed dialogue agents have the potential to integrate human feedback to continuously improve themselves. So we propose JUICER, a framework to make use of both binary and free-form textual human feedback to augment the training data and keep improving dialogue model performance after deployment. Building social influence dialogue systems enables us to research future expert-level AI systems that are accessible via natural languages, accountable with domain knowledge, and privacy-preserving with privacy guarantees.
      번역하기

      This thesis concerns the task of how to develop dialogue systems specialized in social influence and problems around deploying such systems. Dialogue systems have become widely adopted in our daily life. Most dialogue systems are primarily focused on...

      This thesis concerns the task of how to develop dialogue systems specialized in social influence and problems around deploying such systems. Dialogue systems have become widely adopted in our daily life. Most dialogue systems are primarily focused on information-seeking tasks or social companionship. However, they cannot apply strategies in complex and critical social influence tasks, such as healthy habit promotion, emotional support, etc. In this work, we formally define social influence dialogue systems to be systems that influence users' behaviors, feelings, thoughts, or opinions through natural conversations. We also present methods to make such systems intelligible, privacy-preserving, and thus deployable in real life. Finally, we acknowledge potential ethical issues around social influence systems and propose solutions to mitigate them in Chapter 6.Social influence dialogues span various domains, such as persuasion, negotiation, and recommendation. We first propose a donation persuasion task, PERSUASIONFORGOOD, and ground our study on this persuasion task for social good. We then build a persuasive dialogue system, by refining the dialogue model for intelligibility and imitating human experts for persuasiveness, and a negotiation agent that can play the game of Diplomacy by decoupling the planning engine and the dialogue generation module to improve controllability of social influence systems. To deploy such a system in the wild, our work examines how humans perceive the AI agent's identity, and how their perceptions impact the social influence outcome. Moreover, dialogue models are trained on conversations, where people could share personal information. This creates privacy concerns for deployment as the models may memorize private information. To protect user privacy in the training data, our work develops privacy-preserving learning algorithms to ensure deployed models are safe under privacy attacks. Finally, deployed dialogue agents have the potential to integrate human feedback to continuously improve themselves. So we propose JUICER, a framework to make use of both binary and free-form textual human feedback to augment the training data and keep improving dialogue model performance after deployment. Building social influence dialogue systems enables us to research future expert-level AI systems that are accessible via natural languages, accountable with domain knowledge, and privacy-preserving with privacy guarantees.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼