RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Investigation of Multiscale Failure Mechanism of Red Bed Soft Rock using Grain-Based Finite-Discrete Element Method Combined with X-Ray Micro-computerized Tomography

      한글로보기

      https://www.riss.kr/link?id=A108490582

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The mechanical properties and failure mechanisms of geomaterials are greatly affected by their heterogeneity. As a special complex rock medium, the mechanical response of red bed soft rock is of considerable importance in stability analyses and the pr...

      The mechanical properties and failure mechanisms of geomaterials are greatly affected by their heterogeneity. As a special complex rock medium, the mechanical response of red bed soft rock is of considerable importance in stability analyses and the protection of slopes. In this study, X-ray micro-computerized tomography (micro-CT) was used to obtain the spatial distribution of minerals in red bed soft rock. An image processing procedure was proposed to incorporate the extracted mesoscopic mineral and crack distribution into the model of the grain-based finite-discrete element method (GB-FDEM). Subsequently, a uniaxial compression test and Brazilian disc splitting test were performed to obtain the mechanical response and failure modes of mudstone. The microscopic fracture morphology and traces of intragranular and intergranular cracks under tensile and shear stress were analyzed in detail. The numerical results show that the GB-FDEM model successfully characterized the mechanical response, which was similar to that of the laboratory tests and the traditional homogeneous models. The presence of minerals and pre-existing cracks disturbed the stress distribution in the heterogeneous model, which resulted in a difference in local stress that reasonably explained the phenomenon of local fragmentation. The simulated macroscopic failure mode of the heterogeneous models was most consistent with the results of the laboratory tests. The systematic framework proposed in this study provides a powerful tool for further understanding the multiscale (micro, meso, and macro) failure mechanism of red bed soft rock and predicting a realistic fracture process while reducing the tedious and redundant laboratory tests.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼