RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Evolution and development of a novel trait in Sepsidae.

      한글로보기

      https://www.riss.kr/link?id=T14550843

      • 저자
      • 발행사항

        Ann Arbor : ProQuest Dissertations & Theses, 2016

      • 학위수여대학

        North Dakota State University Biological Sciences

      • 수여연도

        2016

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        140 p.

      • 지도교수/심사위원

        Adviser: Julia H. Bowsher.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Evolutionary novelty, the appearance of new traits with no existing homology, is central to the adaptive radiation of new species. Novel traits inform our understanding of development and how developmental mechanisms can generate novelties. Sepsid fl...

      Evolutionary novelty, the appearance of new traits with no existing homology, is central to the adaptive radiation of new species. Novel traits inform our understanding of development and how developmental mechanisms can generate novelties. Sepsid flies (Diptera: Sepsidae) have a sexually dimorphic, jointed appendage used for courtship and mating. The appendage develops from the fourth abdominal histoblast nest rather than an imaginal disc. Histoblast nests in other species produce the adult epidermis and lack three-dimensional organization. The sepsid system is an opportunity to investigate the evolutionary history of a novel trait and the developmental mechanisms that pattern epidermal tissue into a complex structure.
      The appendage has a complex history of gain, loss, and recovery over evolutionary time. Appendage morphology is highly variable between species and does not correlate to body size. I collected larval epidermal tissue from 16 species across Sepsidae and one outgroup to trace the evolutionary history of gain, secondary loss, and recovery. I characterized histoblast nests in all segments and sexes, determining the nest size, number, and size of cells. The appendage-producing nest is sexually dimorphic in species after primary gain. Loss of the appendage shows a return to ancestral state while regain shows an increase in nest size in both sexes. The loss of sex dimorphism may indicate that mechanisms involved in specification may be active in females while genes involved in patterning are not activated during pupation.
      I assembled and annotated a reference transcriptome for the sepsid Themira biloba at using a custom bioinformatic pipeline that uses a merged assembly approach to maximize quality. This pipeline demonstrated an improvement over other methodologies using multiple published metrics for determining quality and completion. This pipeline also demonstrates how cloud computing architecture can complete bioinformatic tasks quickly and at low cost.
      I used the T. biloba transcriptome to identify differentially expressed genes involved in appendage patterning during pupation. I sequenced the appendage producing fourth male larval segment and the third male and fourth female segments. Many of the differentially expressed transcripts are involved in cell signaling, epidermal growth, and transcripts involved morphological development in other species.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼