RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      부상분리 공정의 접촉영역 모델을 이용한 이산화탄소와 공기 기포의 충돌 및 입자 분리효율 비교 평가 = Comparative Evaluation on Collision and Particle Separation Efficiency between CO<sub>2</sub> Bubbles and Air Bubbles Using Contact Zone Model of Flotation Process

      한글로보기

      https://www.riss.kr/link?id=A106047911

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In recent years, carbon dioxide (CO<sub>2</sub>) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using CO<sub>2</sub> as an alternative to air...

      In recent years, carbon dioxide (CO<sub>2</sub>) bubbles emerged as the most widely applied material with the recycling of sequestrated storage to decrease global warming. Flotation using CO<sub>2</sub> as an alternative to air could be effective in overcoming the high power consumption in the dissolved air flotation (DAF) process. The comparison of DAF and DCF system indicated that, the carbon dioxide flotation (DCF) system with pressurized CO<sub>2</sub> only requires 1.5 ~ 2.0 atm, while the DAF system requires 3.0 ~ 6.0 atm. In a bid to understand the characteristics of particle separation, the single collector collision (SCC) model was used and a series of simulations were conducted to compare the differences of collision and flotation between CO<sub>2</sub> bubbles and air bubbles. In addition, laboratory experiments were sequentially done to verify the simulation results of the SCC model. Based on the simulation results, surfactant injection, which is known to decrease bubble size, cloud improved the collision efficiency of CO<sub>2</sub> bubbles similar to that of air bubbles. Furthermore, the results of the flotation experiments showed similar results with the simulation of the SCC model under anionic surfactant injection. The findings led us to conclude that CO<sub>2</sub> bubbles can be an alternative to air bubbles and a promising material as a collector to separate particles in the water and wastewater.

      더보기

      참고문헌 (Reference)

      1 곽동희, "용존이산화탄소부상(DCF) 공정의 입자분리 특성과 부상효율" 대한상하수도학회 25 (25): 471-478, 2011

      2 이준용, "단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가" 한국물환경학회 28 (28): 129-136, 2012

      3 Zable, T., "The advantages of dissolved-air flotation for water treatment" 77 (77): 42-45, 1985

      4 Yoo, Y. H., "Solid separation and flotation characteristics using carbon dioxide micro-bubble" Chonbuk National University 2011

      5 Kwak, D. H., "Serparation charateristices of inorganic particles from rainfalls in dissolved air flotation : A Korean perspective" 40 : 3001-3006, 2005

      6 Malley, J. P., "Removal of organic halide precursors by dissolved air flotation in conventional water treatment" 11 : 1161-1167, 1990

      7 Xing, Y., "Recent experimental advances for understanding bubble-particle attachment in flotation" 246 : 105-132, 2017

      8 Edzwald, J. K., "Principles and applications of dissolved air flotation" 31 (31): 1-23, 1995

      9 Zhang, H., "Microalgal harvesting using foam flotation : A critical review" 120 : 176-188, 2019

      10 Han, M. Y., "Measurement of bubble bed depth in dissolved air flotation using a particle counter" 58 (58): 57-63, 2009

      1 곽동희, "용존이산화탄소부상(DCF) 공정의 입자분리 특성과 부상효율" 대한상하수도학회 25 (25): 471-478, 2011

      2 이준용, "단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가" 한국물환경학회 28 (28): 129-136, 2012

      3 Zable, T., "The advantages of dissolved-air flotation for water treatment" 77 (77): 42-45, 1985

      4 Yoo, Y. H., "Solid separation and flotation characteristics using carbon dioxide micro-bubble" Chonbuk National University 2011

      5 Kwak, D. H., "Serparation charateristices of inorganic particles from rainfalls in dissolved air flotation : A Korean perspective" 40 : 3001-3006, 2005

      6 Malley, J. P., "Removal of organic halide precursors by dissolved air flotation in conventional water treatment" 11 : 1161-1167, 1990

      7 Xing, Y., "Recent experimental advances for understanding bubble-particle attachment in flotation" 246 : 105-132, 2017

      8 Edzwald, J. K., "Principles and applications of dissolved air flotation" 31 (31): 1-23, 1995

      9 Zhang, H., "Microalgal harvesting using foam flotation : A critical review" 120 : 176-188, 2019

      10 Han, M. Y., "Measurement of bubble bed depth in dissolved air flotation using a particle counter" 58 (58): 57-63, 2009

      11 Francois, R. J., "Growth kinetics of hydroxide flocs" 80 (80): 92-96, 1988

      12 Grieves R. B., "Foam separation clarification of natural waters" 62 (62): 304-311, 1970

      13 Prakash, R., "Flotation technique : Its mechanisms and design parameters" 127 : 249-270, 2018

      14 Kwak, D. H., "Flotation of algae for water reuse and biomass production: Role of zeta potential and surfactant to separate algal particles" 72 (72): 762-769, 2015

      15 Kwak, D. H., "Feasibility of carbon dioxide bubbles as a collector in flotation process for water treatment" 62 (62): 52-65, 2013

      16 Afkhami, M., "Effect of Reynolds number on particle interaction and agglomeration in turbulent channel flow" 343 : 908-920, 2019

      17 Harrhoff, J., "Dissolved air flotation modeling : insight and shortcomings" 53 (53): 127-150, 2004

      18 독고석, "DAF에서 기포의 크기제어 및 영향분석" 대한상하수도학회 18 (18): 235-241, 2004

      19 Malley, J. P., "Conceptual model for dissolved-air flotation in drinking water treatment" 40 (40): 7-17, 1991

      20 Michaux, B., "Challenges in predicting the role of water chemistry in flotation through simulation with an emphasis on the influence of electrolytes" 125 : 252-264, 2018

      21 Leppinen, D. M., "Bubble size distribution in dissolved air flotation tanks" 53 (53): 531-543, 2004

      22 Lagvankar, A. L., "A size-density relationship for flocs" 60 (60): 1040-, 1968

      23 Leppinen, D. M., "A kinetic model of dissolved air flotation including the effects of interparticle foreces" 49 (49): 259-268, 2000

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-01-01 학술지명변경 한글명 : 수질보전 한국물환경학회지 -> 한국물환경학회지
      외국어명 : 미등록 -> Journal of Korean Society on Water Environment
      KCI등재
      2011-12-27 학회명변경 영문명 : Korean Society on Water Quality -> Korean Society on Water Environment KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-07-22 학회명변경 영문명 : Journal Of Korean Society On Water Qulity -> Korean Society on Water Quality KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.51 0.46
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.39 0.613 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼