<P>We use the solution space of a pair of ODEs of at least second order to construct a smooth surface in Euclidean space. We describe when this surface is a proper embedding which is geodesically complete with finite total Gauss curvature. If th...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107514142
2017
-
SCOPUS,SCIE
학술저널
1-24(24쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>We use the solution space of a pair of ODEs of at least second order to construct a smooth surface in Euclidean space. We describe when this surface is a proper embedding which is geodesically complete with finite total Gauss curvature. If th...
<P>We use the solution space of a pair of ODEs of at least second order to construct a smooth surface in Euclidean space. We describe when this surface is a proper embedding which is geodesically complete with finite total Gauss curvature. If the associated roots of the ODEs are real and distinct, we give a universal upper bound for the total Gauss curvature of the surface which depends only on the orders of the ODEs and we show that the total Gauss curvature of the surface vanishes if the ODEs are second order. We examine when the surfaces are asymptotically minimal.</P>