RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Transformer fault acoustic identification model based on acoustic denoising and DBO-SVM

      한글로보기

      https://www.riss.kr/link?id=A109205655

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to address the impact of ambient noise on the acquisition of the transformer body acoustic pattern and completely extract the information contained in the transformer acoustic pattern, This study suggests a transformer core loosening identifi...

      In order to address the impact of ambient noise on the acquisition of the transformer body acoustic pattern and completely extract the information contained in the transformer acoustic pattern, This study suggests a transformer core loosening identifi cation technique based on the integration of wavelet threshold denoising and VMD with Identifi cation of transformer core loosening using DBO (Dung Beetle Optimization Algorithm)-optimized SVMs (Support Vector Machine) and the diff erence between the kurtosis value and the mixed acoustic signal is used to get the de-noised signal with a high signal-to-noise ratio.
      After that, the signal is fed into an optimized support vector machine for training in order to produce the core loosening identifi cation model. By means of the no-load tests conducted on a 500 V transformer and the examination of the acoustic signals gathered with varying levels of core looseness, the fi ndings demonstrate that the transformer core looseness identifi - cation model with the denoised MFCC feature parameters and the dung-beetle algorithm optimized support vector machine in this work achieves an accuracy of 96.25%, hence improving the core looseness fault identifi cation rate.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼