Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One o...
Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.