RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      향상된 자동 독순을 위한 새로운 시간영역 필터링 기법 = A New Temporal Filtering Method for Improved Automatic Lipreading

      한글로보기

      https://www.riss.kr/link?id=A109537452

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.
      번역하기

      Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One o...

      Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.

      더보기

      국문 초록 (Abstract)

      자동 독순(automatic lipreading)은 화자의 입술 움직임을 통해 음성을 인식하는 기술이다. 이 기술은 잡음이 존재하는 환경에서 말소리를 이용한 음성인식의 성능 저하를 보완하는 수단으로 최근 주목받고 있다. 자동 독순에서 중요한 문제 중 하나는 기록된 영상으로부터 인식에 적합한 특징을 정의하고 추출하는 것이다. 본 논문에서는 독순 성능의 향상을 위해 새로운 필터링 기법을 이용한 특징추출 기법을 제안한다. 제안하는 기법에서는 입술영역 영상에서 각 픽셀값의 시간 궤적에 대역통과필터를 적용하여 음성 정보와 관련이 없는 성분, 즉 지나치게 높거나 낮은 주파수 성분을 제거한 후 주성분분석으로 특징을 추출한다. 화자독립 인식 실험을 통해 영상에 잡음이 존재하는 환경이나 존재하지 않는 환경에서 모두 향상된 인식 성능을 얻음을 보인다.
      번역하기

      자동 독순(automatic lipreading)은 화자의 입술 움직임을 통해 음성을 인식하는 기술이다. 이 기술은 잡음이 존재하는 환경에서 말소리를 이용한 음성인식의 성능 저하를 보완하는 수단으로 최근...

      자동 독순(automatic lipreading)은 화자의 입술 움직임을 통해 음성을 인식하는 기술이다. 이 기술은 잡음이 존재하는 환경에서 말소리를 이용한 음성인식의 성능 저하를 보완하는 수단으로 최근 주목받고 있다. 자동 독순에서 중요한 문제 중 하나는 기록된 영상으로부터 인식에 적합한 특징을 정의하고 추출하는 것이다. 본 논문에서는 독순 성능의 향상을 위해 새로운 필터링 기법을 이용한 특징추출 기법을 제안한다. 제안하는 기법에서는 입술영역 영상에서 각 픽셀값의 시간 궤적에 대역통과필터를 적용하여 음성 정보와 관련이 없는 성분, 즉 지나치게 높거나 낮은 주파수 성분을 제거한 후 주성분분석으로 특징을 추출한다. 화자독립 인식 실험을 통해 영상에 잡음이 존재하는 환경이나 존재하지 않는 환경에서 모두 향상된 인식 성능을 얻음을 보인다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼