RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Deep learning-based surgical phase recognition in laparoscopic cholecystectomy

      한글로보기

      https://www.riss.kr/link?id=A109401291

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Backgrounds/Aims: Artificial intelligence (AI) technology has been used to assess surgery quality, educate, and evaluate surgical performance using video recordings in the minimally invasive surgery era. Much attention has been paid to automating surgical workflow analysis from surgical videos for an effective evaluation to achieve the assessment and evaluation. This study aimed to design a deep learning model to automatically identify surgical phases using laparoscopic cholecystectomy videos and automatically assess the accuracy of recognizing surgical phases.<BR/>Methods: One hundred and twenty cholecystectomy videos from a public dataset (Cholec80) and 40 laparoscopic cholecystectomy videos recorded between July 2022 and December 2022 at a single institution were collected. These datasets were split into training and testing datasets for the AI model at a 2:1 ratio. Test scenarios were constructed according to structural characteristics of the trained model. No pre- or post-processing of input data or inference output was performed to accurately analyze the effect of the label on model training.<BR/>Results: A total of 98,234 frames were extracted from 40 cases as test data. The overall accuracy of the model was 91.2%. The most accurate phase was Calot’s triangle dissection (F1 score: 0.9421), whereas the least accurate phase was clipping and cutting (F1 score: 0.7761).<BR/>Conclusions: Our AI model identified phases of laparoscopic cholecystectomy with a high accuracy.
      번역하기

      Backgrounds/Aims: Artificial intelligence (AI) technology has been used to assess surgery quality, educate, and evaluate surgical performance using video recordings in the minimally invasive surgery era. Much attention has been paid to automating surg...

      Backgrounds/Aims: Artificial intelligence (AI) technology has been used to assess surgery quality, educate, and evaluate surgical performance using video recordings in the minimally invasive surgery era. Much attention has been paid to automating surgical workflow analysis from surgical videos for an effective evaluation to achieve the assessment and evaluation. This study aimed to design a deep learning model to automatically identify surgical phases using laparoscopic cholecystectomy videos and automatically assess the accuracy of recognizing surgical phases.<BR/>Methods: One hundred and twenty cholecystectomy videos from a public dataset (Cholec80) and 40 laparoscopic cholecystectomy videos recorded between July 2022 and December 2022 at a single institution were collected. These datasets were split into training and testing datasets for the AI model at a 2:1 ratio. Test scenarios were constructed according to structural characteristics of the trained model. No pre- or post-processing of input data or inference output was performed to accurately analyze the effect of the label on model training.<BR/>Results: A total of 98,234 frames were extracted from 40 cases as test data. The overall accuracy of the model was 91.2%. The most accurate phase was Calot’s triangle dissection (F1 score: 0.9421), whereas the least accurate phase was clipping and cutting (F1 score: 0.7761).<BR/>Conclusions: Our AI model identified phases of laparoscopic cholecystectomy with a high accuracy.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼