<P>The signal via is a heavily utilized interconnection structure in high-density System-on-Package (SoP) substrates and printed circuit boards (PCBs). Vias facilitate complicated routings in these multilayer structures. Significant simultaneous...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107527739
2006
-
SCI,SCIE,SCOPUS
학술저널
548-559(12쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The signal via is a heavily utilized interconnection structure in high-density System-on-Package (SoP) substrates and printed circuit boards (PCBs). Vias facilitate complicated routings in these multilayer structures. Significant simultaneous...
<P>The signal via is a heavily utilized interconnection structure in high-density System-on-Package (SoP) substrates and printed circuit boards (PCBs). Vias facilitate complicated routings in these multilayer structures. Significant simultaneous switching noise (SSN) coupling occurs through the signal via transition when the signal via suffers return current interruption caused by reference plane exchange. The coupled SSN decreases noise and timing margins of digital and analog circuits, resulting in reduction of achievable jitter performance, bit error ratio (BER), and system reliability. We introduce a modeling method to estimate SSN coupling based on a balanced transmission line matrix (TLM) method. The proposed modeling method is successfully verified by a series of time-domain and frequency-domain measurements of several via transition structures. First, it is clearly verified that SSN coupling causes considerable clock waveform distortion, increases jitter and noise, and reduces margins in pseudorandom bit sequence (PRBS) eye patterns. We also note that the major frequency spectrum component of the coupled noise is one of the plane pair resonance frequencies in the PCB power/ground pair. Furthermore, we demonstrate that the amount of SSN noise coupling is strongly dependent not only on the position of the signal via, but also on the layer configuration of the multilayer PCB. Finally, we have successfully proposed and confirmed a design methodology to minimize the SSN coupling based on an optimal via positioning approach</P>