RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      CNN 기반 한국 숫자지화 인식 응용에서 표면근전도 샘플링 주파수가 학습 성능에 미치는 영향에 관한 연구 = The Study on Effect of sEMG Sampling Frequency on Learning Performance in CNN based Finger Number Recognition

      한글로보기

      https://www.riss.kr/link?id=A108533359

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구는 CNN에 기반한 한국 숫자지화 인식 시스템의 입력데이터인 표면 근전도 신호에 대한 샘플링 주파수가 CNN의 학습 성능에 미치는 영향을 검토하였다. 표면 근전도의 샘플링 주파수가 ...

      본 연구는 CNN에 기반한 한국 숫자지화 인식 시스템의 입력데이터인 표면 근전도 신호에 대한 샘플링 주파수가 CNN의 학습 성능에 미치는 영향을 검토하였다. 표면 근전도의 샘플링 주파수가 크면 수집한 많은 양의 입력데이터에 대한 학습 시간이 길어지므로 실시간 시스템의 구현이 어려움이 발생하고 고가의 표면 근전도 측정장비를 필요로 하므로 표면근전도 신호의 샘플링 주파수 선정에서 적정선이 요구된다. 이를 위해 본 연구에서는 1,024Hz, 512Hz, 256Hz, 128Hz 그리고 64Hz의 샘플링 주파수를 선정하고 선정된 샘플링 주파수로 측정한 표면근전도 신호를 입력으로 CNN 학습 성능을 비교하였다. 비교 연구 결과는 선정된 모든 샘플링 주파수로 획득한 표면근전도 신호를 입력데이터를 활용한 CNN 학습 모두가 한국 숫자지화 일부터 다섯을 100% 인식하였으며, 그중에서도 256Hz의 샘플링 주파수로 획득한 표면근전도 신호를 입력데이터로 활용한 CNN 학습이 가장 짧은 시간 안에 이루어졌다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼