RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions

      한글로보기

      https://www.riss.kr/link?id=A107460190

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Ultrasonic flaw classification in weldment is an active area of research and many artificial intelligence approaches have been applied to automate this process. However, in the industrial applic...

      <P><B>Abstract</B></P> <P>Ultrasonic flaw classification in weldment is an active area of research and many artificial intelligence approaches have been applied to automate this process. However, in the industrial applications, the ultrasonic flaw signals are not noise free and automatic intelligent defect classification algorithms show relatively low classification performance. In addition, most of the algorithms require some statistical or signal processing techniques to extract some features from signals in order to make classification easier. In this article, the convolutional neural network (CNN) is applied to noisy ultrasonic signatures to improve classification performance of weldment defects and applicability. The result shows that CNN is robust, does not require specific feature extraction methods and give considerable high defect classification accuracies even for noisy signals.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Investigation of CNN for classification of noisy ultrasonic flaw signals. </LI> <LI> Time shifting of signals for data augmentation. </LI> <LI> Performance comparison of fully connected deep neural network and CNN. </LI> </UL> </P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼