RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

      한글로보기

      https://www.riss.kr/link?id=A103860921

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by x0 2 C arbitrarily chosen,xn+1 = αnγf(Wnxn)+βnxn+((1−βn)I−αnA)WnPC(I−snB)xn, ∀n≥0,where γ > 0, B : C → H is a β-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient α (0 < α < 1), Pc is a projection of H onto C, A is a strongly positive linear bounded operator on H and Wn is the W-mapping generated by a finite family of nonexpansive mappings T1, T2, ... TN and {λn,1}, {λn,2}, . . . , {λn,N}. Nonexpansivity of each Ti ensures the nonexpansivity of Wn. We prove that the sequence {χn} generated by the above iterative algorithm converges strongly to a common fixed point q ∈ F := ∩Ni=1F(Ti)∩VI(C,B) which solves the variational inequality <(γf − A)q, p − q>≤ 0 for all p ∈ F. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.
      번역하기

      Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by x0 2 C arbitrarily chosen,xn+1 = αnγf(Wnxn)+βnxn+((1−βn)I−αnA)WnPC(I−snB)xn, ∀n≥0,where γ > 0, B : C → H is a ...

      Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by x0 2 C arbitrarily chosen,xn+1 = αnγf(Wnxn)+βnxn+((1−βn)I−αnA)WnPC(I−snB)xn, ∀n≥0,where γ > 0, B : C → H is a β-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient α (0 < α < 1), Pc is a projection of H onto C, A is a strongly positive linear bounded operator on H and Wn is the W-mapping generated by a finite family of nonexpansive mappings T1, T2, ... TN and {λn,1}, {λn,2}, . . . , {λn,N}. Nonexpansivity of each Ti ensures the nonexpansivity of Wn. We prove that the sequence {χn} generated by the above iterative algorithm converges strongly to a common fixed point q ∈ F := ∩Ni=1F(Ti)∩VI(C,B) which solves the variational inequality <(γf − A)q, p − q>≤ 0 for all p ∈ F. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.

      더보기

      참고문헌 (Reference)

      1 Z. Opial, "Weak convergence of successive approximations for nonexpansive mappins" (73) : 591-597, 1967

      2 W. Takahashi, "Weak and strong convergence theorems for families of nonexpansive mappings and their applications" (51) : 277-292, 1997

      3 J.M. Chen, "Viscosity approximation methods for nonexpansive mappings and monotone mappings" 334 (334): 1450-1461, 2007

      4 A. Moudafi, "Viscosity approximation methods for fixed points problems" 241 (241): 46-55, 2000

      5 I. Yamada, "The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings. in: Inherently Parallel Algorithm for Feasibility and Optimization" Elsevier 473-504, 2001

      6 H. Iiduka, "Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings" 61 (61): 341-350, 2005

      7 S. Atsushiba, "Strong convergence theorems for a finite family of nonexpansive mappings and applications" (41) : 435-453, 1999

      8 T. Suzuki, "Strong convergence of Krasnoselskii and Manns type sequences for oneparameter nonexpansive semigroups without Bochner integrals" 305 (305): 227-239, 2005

      9 R.T. Rockafellar, "On the maximality of sums of nonlinear monotone operators" (149) : 75-88, 1970

      10 A.N. Iusem, "On the convergence of Hans method for convex programming with quadratic objective" (52) : 265-284, 1991

      1 Z. Opial, "Weak convergence of successive approximations for nonexpansive mappins" (73) : 591-597, 1967

      2 W. Takahashi, "Weak and strong convergence theorems for families of nonexpansive mappings and their applications" (51) : 277-292, 1997

      3 J.M. Chen, "Viscosity approximation methods for nonexpansive mappings and monotone mappings" 334 (334): 1450-1461, 2007

      4 A. Moudafi, "Viscosity approximation methods for fixed points problems" 241 (241): 46-55, 2000

      5 I. Yamada, "The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings. in: Inherently Parallel Algorithm for Feasibility and Optimization" Elsevier 473-504, 2001

      6 H. Iiduka, "Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings" 61 (61): 341-350, 2005

      7 S. Atsushiba, "Strong convergence theorems for a finite family of nonexpansive mappings and applications" (41) : 435-453, 1999

      8 T. Suzuki, "Strong convergence of Krasnoselskii and Manns type sequences for oneparameter nonexpansive semigroups without Bochner integrals" 305 (305): 227-239, 2005

      9 R.T. Rockafellar, "On the maximality of sums of nonlinear monotone operators" (149) : 75-88, 1970

      10 A.N. Iusem, "On the convergence of Hans method for convex programming with quadratic objective" (52) : 265-284, 1991

      11 F. Deutsch, "Minimizing certain convex functions over the intersection of the fixed point set of nonexpansive mappings" (19) : 33-56, 1998

      12 D.C. Youla, "Mathematical theory of image restoration by the method of convex projections. in: Image Recovery: Theory and Applications" Academic Press 29-77, 1987

      13 H.K. Xu, "Iterative algorithms for nonlinear operators" (66) : 240-256, 2002

      14 W. Takahashi, "Convergence theorems for nonexpansive mappings and feasibility problems" 32 (32): 1463-1471, 2000

      15 V. Colao, "An iterative method for finding common solutions of equilibrium and fixed point problems" 344 (344): 340-352, 2008

      16 H.K. Xu, "An iterative approach to quadratic optimization" 116 (116): 659-678, 2003

      17 G. Marino, "A general iterative method for nonexpansive mappings in Hilbert spaces" 318 (318): 43-52, 2006

      18 Y. Yao, "A general iterative method for a finite family of nonexpansive mappings" 66 (66): 2676-2687, 2007

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-11-08 학회명변경 영문명 : The Korean Society For Computational & Applied Mathematics And Korean Sigcam -> Korean Society for Computational and Applied Mathematics KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-18 학술지명변경 한글명 : Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Informatics
      외국어명 : Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Informatics
      KCI등재
      2008-02-15 학술지명변경 한글명 : Journal of Applied Mathematics and Computing(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.)
      외국어명 : Journal of Applied Mathematics and Computing(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.)
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.16 0.16 0.13
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.1 0.07 0.312 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼